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Abstract

In a domain in RN with N ≥ 3, periodically perforated with small holes, the asymp-
totic behavior of a quasilinear elliptic problem is studied in this work, via unfolding
method. On the boundary of the holes, a nonhomogeneous Neumann boundary con-
dition is prescribed; while a Dirichlet boundary condition is imposed in the exterior
boundary. This homogenization process reveals a strange term at the limit depending
on the capacity of the holes and the limit function. A corrector result is also presented
to complete the homogenization process of the problem.
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1 Introduction

Let N ≥ 3 and consider a domain Ω in RN . For positive sequences ε and δ = δ(ε) tending
to zero, we denote by Ωεδ the domain with small holes which is obtained by removing ε-
periodically distributed holes Bεδ of size εδ in Ω. We denote by ∂Bεδ the boundary of the
small holes which are fully contained in Ω but do not intersect the outer boundary ∂Ω. This
paper is devoted to the multiscale analysis of the following quasilinear elliptic problem: −div [Aε(x, uεδ)∇uεδ] = f in Ωεδ,

Aε(x, uεδ)∇uεδ · nεδ = gεδ on ∂Bεδ,
uεδ = 0 on ∂Ω,

(1.1)

where nεδ is the unit exterior normal vector to Bεδ. In this problem, we assume that f is
a square integrable function in Ω, gεδ is a function defined on ∂B, and that the quasilinear
highly oscillating coefficient Aε is bounded and uniformly elliptic.
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The homogenization of elliptic partial differential equations in perforated domains can
be traced back to the seminal works of E.Ja. Hrouslov in [22, 23] and with V.A. Marcenko in
[25] for the Dirichlet problem. Later on, Neumann variants were studied by E.Ja. Hrouslov
in [24] while mixed-type problems were examined in [15, 16] by D. Cioranescu and J. Saint
Jean Paulin.

We highlight the important contributions of D. Cioranescu and F. Murat in [13] via the
energy method of L. Tartar (see [28, 29]) for the Poisson equation with Dirichlet boundary
condition, and to the work of C. Conca and P. Donato in [18] for the Laplacian with
nonhomogeneous Neumann boundary condition. These works emphasize the existence of a
critical size for the small holes which is significant to the limit behavior. In fact, for the
Dirichlet problem in [13], the size εN/(N−2) for N ≥ 3 is “critical” in the sense that this
leads to the appearance of a “strange term” in the limit problem which corresponds to the
capacity of the holes as ε approaches 0. We call this size of holes here as “Dirichlet critical”.
A similar behavior was observed for size εN/(N−1) for N ≥ 2 on the Neumann variant in
[18] For this critical size, we say that it is “Neumann critical”. For further readings on
optimal controls involved in limit problems with strange terms, one can also check [20] by
J.I. Diaz, A.V. Podolskiy, and T.A. Shaposhnikova, and for approximate controllability in
[19] by C. Conca, E. Jose, and I. Mishra.

A linear problem with Neumann boundary condition related to (1.1) was considered by
A. Ould-Hammouda in [26] wherein the size of the holes is Neumann critical as in [18].
For the heat and wave equations with Dirichlet boundary conditions, the reader is referred
the work of B. Cabarrubias and P. Donato in [5] and to [27] by A. Ould-Hammouda and
R. Zaki for a linear elliptic problem with nonlinear Robin boundary condition posed in a
setting with two sets of small holes. One can also see the work of the authors in [1] for the
quasilinear case with nonlinear Robin boundary condition in a domain with two different
sets of small holes. In the present work, we deal with quasilinear matrix coefficients in
perforated domains where the size of the holes is Dirichlet critical as considered in [13].

It may seem at first that this work is a special case [1] but there is a subtle difference.
In [1], the two set of holes have different critical sizes; Dirichlet critical for the Dirichlet
boundary condition on one set of the holes while Neumann critical for the Robin boundary
condition on the other set of holes. The present work investigates what happens if one has a
Neumann boundary condition on holes whose size is Dirichlet critical. One more difference
of this work not just with [1] but also with the other works mentioned above, is the presence
of corrector result.

Physically, problem (1.1) can model complex interactions involved in a heat diffusion
process for periodic heterogeneous media. For instance, uεδ represents the temperature
of the material, Aε(x, uεδ)∇uεδ · nεδ the heat flux which is also determined by gεδ, and
the function f acting as an external heat source. Some actual applications related to this
problem involve the chemical reactions happening on the wall of a reactor with periodically
distributed grains as in the Fruendlich kinetics model and the Langmuir kinetics model
(see, for instance, [17]) Furthermore, it is known that certain composite materials such
as ceramics or semiconductors exhibit a nonlinear dependence on its thermal conductivity.
This makes our work relevant as an addition to the roster of models of such phenomena
especially in situations where the flux of the temperature on the boundary of the material
behaves in a particular way as specified by the Neumann boundary condition.

The upscaling process for (1.1) is done using the periodic unfolding method. This ho-
mogenization technique is originally conceptualized for fixed domains by D. Cioranescu,
A. Damlamian, and G. Griso in [7]. Subsequently, several extensions of the method were es-
tablished. Among these are by D. Cioranescu, P. Donato and R. Zaki in [11] for periodically
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perforated materials, the work of P. Donato, K.H. Le Nguyen and R. Tardieu [21] for two-
component domains, by D. Cioranescu, A. Damlamian, G. Griso, and D. Onofrei in [9] for
domains with small holes, and that of B. Cabarrubias and P. Donato [5] for time-dependent
functions in small holes. One can also refer to [8] by D. Cioranescu, A. Damlamian, and
G. Griso for a comprehensive survey of this method.

One of the difficulties addressed in this work is the passage to the limit in the quasilinear
matrix coefficient. In addition, due to the size of the holes, a suitable class of test functions
is needed in order to reveal the contribution of the small holes. Another difficulty relies
on obtaining the corrector results which have not been explored in the literature for the
Neumann case. In order to resolve these obstacles, we first show in Proposition 4.1 the
convergence of the quasilinear matrix by exploiting the properties of the unfolding operators.
Then, we prove the homogenization results in Theorem 4.2 and the classical formulation
in Corollary 4.3 by adapting some arguments from [9] to our case. Finally, by suitable
modifications in the ideas given in [8], the corrector results for this work are obtained by
showing first the convergence of the energy in Theorem 5.2 leading to the strong convergence
of the solution in Corollary 5.3.

The paper is organized as follows: Section 2 provides the geometric framework, data
assumptions, and functional setting of problem (1.1). Next, Section 3 recalls the suitable
version of the unfolding method for our case. Section 4 presents the asymptotic behavior of
the problem while, lastly, Section 5 gives the corrector result.

2 Framework of The Problem

Let N ≥ 3 and consider two positive sequences ε and δ such that δ = δ(ε) → 0 as ε → 0.
First, we introduce the geometric framework as presented in [9] (see also [8]).

In a bounded domain Ω ⊆ RN , we use Y =
(
− 1

2 ,
1
2

)N
as the reference cell. For Ξε =

{ξ ∈ ZN | ε(ξ + Y ) ⊂ Ω}, denote by Ω̂ε = int
{
∪ξ∈Ξε

ε(ξ + Y )
}
and Λε = Ω \ Ω̂ε. To obtain

the perforations, we begin with an open set B ⊆ Y and distribute the rescaled version δB
with period ε. Then, Yδ = Y \δB is the perforated reference cell with Bεδ = ∪ξ∈Ξε

ε(ξ+δB)
the copies of the holes inside Ω such that ∂Bεδ ∩∂Ω = ∅. Therefore, the domain with small
holes of size εδ is defined as Ωεδ =

{
x ∈ Ω

∣∣ {x
ε

}
Y
∈ Yδ

}
as in Figure 1.

∂Ω

Ω̂ε

Λε
∂Bεδ

δB

Yδ

Y
B

Figure 1: The perforated domain Ωεδ.

Moreover, for an open set O ⊆ RN and α, β ∈ R such that 0 < α < β, we denote by
M(α, β,O) the set of matrix fields A ∈ L∞(O)N×N satisfying

(A(y)ξ, ξ) ≥ α|ξ|2 and |A(y)ξ| ≤ β|ξ|, ∀ξ ∈ RN ,∀y ∈ O.
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Also, the notation MO(v) =
1

|O|

∫
O
v dx is the average in O of a function v ∈ L1(O).

To proceed, let us now give the data hypotheses in problem (1.1) for any ε and δ :

(H1) The matrix field Aε(x, s) = A
(
x
ε , s
)
such that A : Y ×R→ R satisfies:

(i) A is a Carathéodory function,

(ii) A(·, s) ∈ M(α, β, Y ) is a Y -periodic function for all s ∈ R,
(iii) there exists a function ω : R→ R such that

(a) ω is continuous and nondecreasing with ω(s) > 0 for any s > 0,

(b) |A(y, s1)−A(y, s2)| ≤ ω(|s1 − s2|) for a.e. y ∈ Y and for any s1 ̸= s2,

(c) for any t > 0, lim
y→0+

∫ t

y

ds

ω(s)
= +∞.

(H2) The function f is in L2(Ω).

(H3) The function gεδ(x) = g
(
1
δ

{
x
ε

})
is such that g ∈ L2(∂B).

(H4) The parameters ε and δ satisfy

0 ≤ λ = lim
ε→0

δ
N
2 −1

ε
< +∞.

Remark 2.1. The number λ corresponds to the critical size of Dirichlet small holes from

[13].

Remark 2.2. When f ∈ (Vεδ)
′ and g ∈ H− 1

2 (∂B) instead of the data assumptions in (H2)

and (H3), the results obtained here are still valid and the proofs are similar.

Next, define the space

Vεδ = {φ ∈ H1(Ωεδ) | φ = 0 on ∂Ω},

equipped with the norm

∥u∥Vεδ
= ∥∇u∥L2(Ωεδ), ∀u ∈ Vεδ. (2.1)

Remark 2.3. A Poincaré inequality holds in Vεδ. Moreover, the norms in Vεδ and H1(Ωεδ)

are equivalent.

In the sequel, we still denote by φ ∈ Vεδ, its extension by zero in Bεδ. The variational
formulation of (1.1) reads as

Find uεδ ∈ Vεδ such that∫
Ωεδ

Aε(x, uεδ)∇uεδ∇v dx =

∫
Ωεδ

fv dx+

∫
∂Bεδ

gεδv dσ,

for every v ∈ Vεδ.

(2.2)

The following result which implies the well-posedness of problem (1.1) follows from [3] for
the case γ = 0. One makes use of the Lax-Milgram Theorem together with the Schauder’s
Fixed Point Theorem for the existence of the solution and some technique introduced in [6]
to deal with the uniqueness part. The boundedness of the solution invokes the assumptions
as well as Cauchy-Schwarz and Poincaré inequalities, and (2.1).
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Theorem 2.4. For every fixed ε, δ > 0 and under (H1) - (H3), problem (2.2) admits a

unique solution uεδ ∈ Vεδ. Moreover, this solution satisfies the estimate

∥uεδ∥Vεδ
≤ C, (2.3)

for some constant C > 0.

3 The Periodic Unfolding Method

In this section, we present the operators and some properties under the unfolding method
necessary for this work as given in [7] for fixed domains and in [9] for small holes. The reader
is referred to these references for the details. In what follows, we assume that p ∈ [1,+∞).

Definition 3.1 ([7]). The unfolding operator Tε : φ ∈ Lp(Ω) 7→ Lp(Ω× Y ) is given by

Tε(φ)(x, y) =

 φ
(
ε
[x
ε

]
Y
+ εy

)
, a.e. in Ω̂ε × Y,

0, a.e. in Λε × Y.

Proposition 3.2 ([7]). The operator Tε is linear and continuous. Moreover, for φ ∈ L1(Ω),

and v, w ∈ Lp(Ω), one has

(i) Tε(vw)(x, y) = Tε(v)(x, y) Tε(w)(x, y);

(ii)

∫
Ω×Y

Tε(φ)(x, y) dxdy =

∫
Ω

φ(x) dx−
∫
Λε

φ(x) dx =

∫
Ω̂ε

φ(x) dx;

(iii)

∫
Ω×Y

|Tε(φ)(x, y)| dxdy ⩽
∫
Ω

|φ(x)| dx;

(iv)

∣∣∣∣∫
Ω

φ(x) dx−
∫
Ω×Y

Tε(φ)(x, y) dxdy
∣∣∣∣ ⩽ ∫

Λε

|φ(x)| dx;

(v) if φε(x) = φ
(
x
ε

)
is Y -periodic, then Tε(φε)(x, y) = φ(y);

(vi) for a sequence {wε} in Lp(Ω) such that wε → w strongly in Lp(Ω), Tε(wε) → w

strongly in Lp(Ω× Y );

(vii) for a sequence {wε} in W 1,p(Ω) such that wε ⇀ w weakly in W 1,p(Ω), Tε(wε) ⇀ w

weakly in Lp(Ω;W 1,p(Y )), and that there exists ŵ ∈ Lp(Ω;W 1,p
per(Y )) such that up to

a subsequence, Tε(∇wε)⇀ ∇w +∇yŵ weakly in Lp(Ω× Y );

(viii) if a sequence {φε} in L1(Ω) satisfies

∫
Λε

|φε(x)| dx→ 0, then we write

∫
Ω

φε(x) dx
Tε≃
∫
Ω×Y

Tε(φε)(x, y) dxdy.
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Definition 3.3 ([7]). The local average operator Mε
Y : φ ∈ Lp(Ω) 7→ Lp(Ω) is given by

Mε
Y (φ) =

∫
Y

Tε(φ) dy.

Proposition 3.4 ([7]). If {vε} is a bounded sequence in Lp(Ω) such that vε → v strongly in Lp(Ω),

then Mε
Y (vε) → v strongly in Lp(Ω).

Definition 3.5 ([12]). The averaging operator Uε : L
p(Ω×Y ) → Lp(Ω) is defined as follows:

Uε(Φ)(x) =


1

|Y |

∫
Y

Φ
(
ε
[x
ε

]
Y
+ εz,

{x
ε

}
Y

)
dz a.e. on Ω̂ε,

0 a.e. on Λε.

Proposition 3.6 ([12]). The operator Uε is linear and continuous, and the following holds:

(i) If φ ∈ Lp(Ω) is independent of y, then Uε(φ) → φ strongly in Lp(Ω).

(ii) Suppose {wε} is a sequence in Lp(Ω), then the following assertions are equivalent:

(a) Tε(wε) → ŵ strongly in Lp(Ω× Y ) and

∫
Λε

|wε|p dx→ 0.

(b) wε − Uε(ŵ) → 0 strongly in Lp(Ω).

Proposition 3.7 ([12]). For p ∈ [1,∞), suppose that α is in Lp(Ω) and β in L∞(Ω;Lp(Y )).

Then the product Uε(α)Uε(β) belongs to Lp(Ω) and

Uε(αβ)− Uε(α)Uε(β) → 0 strongly in Lp(Ω).

Next, we consider those for domains with small holes as presented in [9].

Definition 3.8 ([9]). The unfolding operator Tε,δ : φ ∈ Lp(Ω) 7→ Lp(Ω×RN ), is given by

Tε,δ(φ)(x, z) =

 Tε(φ)(x, δz) if (x, z) ∈ Ω̂ε × 1
δY,

0 otherwise.

Let us now have the properties of the operator Tε,δ.

Proposition 3.9 ([9]). The operator Tε,δ is linear and continuous. Moreover, one has the

following:

(i) For any v, w ∈ Lp(Ω), Tε,δ(vw) = Tε,δ(v)Tε,δ(w).

(ii) For any u ∈ L1(Ω), δN
∫
Ω×RN

|Tε,δ(u)| dxdz ⩽
∫
Ω

|u| dx.

(iii) For any u ∈ L2(Ω), ∥Tε,δ(u)∥2L2(Ω×RN ) ⩽
1

δN
∥u∥2L2(Ω).



Asymptotic behavior of a quasilinear... 7

(iv) For any u ∈ L1(Ω),

∣∣∣∣∫
Ω

u dx− δN
∫
Ω×RN

Tε,δ(u) dxdz
∣∣∣∣ ⩽ ∫

Λε

|u| dx.

(v) Let u ∈ H1(Ω). Then, Tε,δ(∇xu) =
1
εδ∇z(Tε,δ(u)) in Ω× 1

δY.

(vi) Suppose N ⩾ 3 and let ω ⊂ RN be open and bounded. The following estimates hold:

∥∇z(Tε,δ(u))∥2L2(Ω× 1
δY ) ⩽

ε

δN−2
∥∇u∥2L2(Ω),

∥Tε,δ(u−Mε
Y (u))∥2L2(Ω;L2∗ (RN )) ⩽

Cε2

δN−2
∥∇u∥2L2(Ω),

∥Tε,δ(u)∥2L2(Ω×ω) ⩽
2Cε2

δN−2
|ω|2/N∥∇u∥2L2(Ω) + 2|ω|∥u∥2L2(Ω),

where C is the Sobolev-Poincaré-Wirtinger constant for H1(Y ).

(vii) Let {wεδ} be a sequence in H1(Ω) which is uniformly bounded as both ε and δ approach

zero. Then there exists W ∈ L2(Ω;L2∗(RN )) with ∇zW ∈ L2(Ω×RN ) such that up

to a subsequence,

δ
N
2 −1

ε

(
Tε,δ(wεδ)−Mε

Y (wεδ)1 1
δY

)
⇀W weakly in L2(Ω;L2∗(RN )),

and
δ

N
2 −1

ε
∇z(Tε,δ(wεδ))1 1

δY
⇀ ∇zW weakly in L2(Ω×RN ).

Furthermore, if

lim sup
(ε,δ)→(0+,0+)

δ
N
2 −1

ε
< +∞,

then one can choose the subsequence and some U ∈ L2
loc(Ω;L

2∗(RN )) such that

δ
N
2 −1

ε
Tε,δ(wεδ)⇀ U weakly in L2

loc(Ω;L
2∗(RN )),

where 2∗ = 2N
N−2 is the associated Sobolev exponent.

(viii) If a sequence {φε} in L1(Ω) satisfies

∫
Λε

|φε(x)| dx→ 0, then we write

∫
Ω

φε(x) dx
Tε,δ≃ δN

∫
Ω×RN

Tε,δ(φε)(x, z) dxdz.

Another operator from [14] is given below to treat the boundary terms.

Definition 3.10 ([14]). The boundary unfolding operator T b
ε,δ : φ ∈ Lp(∂Bεδ) 7→ Lp(RN ×

∂B) is given by

T b
ε,δ(φ)(x, z) = φ

(
ε
[x
ε

]
Y
+ εδz

)
, ∀x ∈ RN ,∀z ∈ ∂B.
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Proposition 3.11 ([14]). Let v, φ ∈ Lp(∂Bεδ).

(i) T b
ε,δ(vφ)(x, z) = T b

ε,δ(v)(x, z) T b
ε,δ(φ)(x, z).

(ii) Set φε = φ
(
1
δ

{
x
ε

} )
. Then, T b

ε,δ(φε)(x, z) = φ(z).

(iii) We have the following integration formula:∫
∂Bεδ

φ(x) dσx =
δN−1

ε

∫
RN×∂B

T b
ε,δ(φ)(x, z) dxdσz, ∀φ ∈ L1(∂Bεδ).

Proposition 3.12 ([14]). For g ∈ L2(∂B), set gεδ(x) = g
(
1
δ

{
x
ε

})
for any x ∈ ∂Bεδ. For

all φ ∈ H1(Ω), as ε→ 0,

ε

δN−1

∫
∂Bεδ

gεδφdσx → |∂B|M∂B(g)

∫
Ω

φdx.

To conclude this section, we provide the space in which some of our test functions will
be taken. Define the functional space

KB = {φ ∈ L2∗(RN ) | ∇φ ∈ L2(RN ) and φ constant on B}.

Proposition 3.13 ([9]). Let v ∈ D(RN ) ∩KB and set wεδ(x) = v(B)− v
(
1
δ

{
x
ε

})
for any

x ∈ RN . Then, wεδ ⇀ v(B) weakly in H1(Ω) and Tε,δ(∇wεδ) = − 1
εδ∇zv in Ω̂ε × 1

δY.

4 Homogenization Results

At this juncture, we are now in the position to describe the asymptotic behavior of (1.1).
In the sequel, we say ε→ 0 to mean that (ε, δ) → (0+, 0+).

Before we proceed, we have a result analogous to that in [1] and [4]. We just provide
here the properties used in the proof.

Proposition 4.1. Let uεδ ⇀ u0 weakly in H1(Ω). Then,

Tε
[
Aε(x, uεδ)

]
→ A(y, u0) a.e. in Ω× Y, (4.1)

Tε,δ
[
Aε(x, uεδ)

]
→ A(z, u0) a.e. in Ω× (RN \B). (4.2)

Proof. The convergences in (4.1) and (4.2) follow from Proposition 3.2 (vii), Definitions 3.1

and 3.8 and assumptions (i) and (ii) of (H1).

We now present one of the main results in this work.

Theorem 4.2. Under (H1) - (H4), let uεδ ∈ Vεδ be the unique solution of (2.2). Then up

to a subsequence, there exists u0 ∈ H1
0 (Ω) such that

ũεδ → u0 strongly in L2(Ω). (4.3)
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Moreover, there exist û ∈ L2(Ω;H1
per(Y )) and U ∈ L2(Ω;L2

loc(R
N )) vanishing on Ω × B

with U − λu0 in L2(Ω;KB) such that the ordered triple (u0, û, U) solves the following limit

equations: ∫
Y

A(y, u0)(∇u0 +∇yû)∇yφ(y) dy = 0 a.e. in Ω and ∀φ ∈ H1
per(Y ), (4.4)

∫
RN\B

A(z, u0)∇zU∇zv(z) dz = 0 a.e. in Ω and ∀v ∈ KB with v(B) = 0, (4.5)

and ∫
Ω×Y

A(y, u0)(∇u0 +∇yû)∇ψ dxdy

−λ
∫
Ω×∂B

A(z, u0)∇zUνBψ dxdσz =

∫
Ω

fψ dx, for all ψ ∈ H1
0 (Ω),

(4.6)

where νB is the unit exterior normal to the set B and dσz the surface measure.

Proof. We give the proof in several steps.

Step 1. First, note that (4.3) is immediate from the estimate in (2.3) and that the existence

of û ∈ L2(Ω;H1
per(Y )) is guaranteed by Proposition 3.2 (vii).

On the other hand, the existence of U ∈ L2(Ω;L2
loc(R

N )) such that U − λu0 is in

L2(Ω;KB) follows by using the same arguments given in [9], so we omit the details here.

Let us now proceed to the limit equations.

Step 2. To show (4.4), let ψ ∈ D(Ω) and φ ∈ C1
per(Y ) be vanishing in a neighborhood of

the origin. So for ε and δ small enough, one has Ψ(·) = εψ(·)φ
( ·
ε

)
∈ Vεδ.

Take Ψ ∈ Vεδ as a test function in (2.2), and thus,∫
Ωεδ

Aε(x, uεδ)∇uεδ∇Ψ dx =

∫
Ωεδ

fΨ dx+

∫
∂Bεδ

gεδΨ dσ.

By the gradient of Ψ and the chain rule applied to φ, we have

ε

∫
Ωεδ

Aε(x, uεδ)∇uεδ∇ψφ
(x
ε

)
dx+

∫
Ωεδ

Aε(x, uεδ)∇uεδψ∇φ
(x
ε

)
dx

= ε

∫
Ωεδ

fψφ
(x
ε

)
dx+ ε

∫
∂Bεδ

gεδψφ
(x
ε

)
dσ.

Note that as ε approaches zero, all integrals in this equation approach zero except the second

term on the left-hand side. Unfolding this term by Tε, in view of Proposition 3.2 (i) (viii),

yields∫
Ωεδ

Aε(x, uεδ)∇uεδψ∇φ
(x
ε

)
dx

Tε≃
∫
Ω×Y

Tε(Aε(x, uεδ))Tε(∇uεδ)Tε(ψ)Tε
(
∇φ

(x
ε

))
dxdy.
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This, together with (4.1), (4.3), and Proposition 3.2 (v) (vi) (vii) allow us to pass to the

limit to obtain

lim
ε→0

∫
Ωεδ

Aε(x, uεδ)∇uεδψ∇φ
(x
ε

)
dx =

∫
Ω×Y

A(y, u0)(∇u0 +∇û)ψ∇yφ(y) dxdy,

from which (4.4) follows by density.

Step 3. For (4.5) and (4.6), we observe the effect of the perforations in the limit equation by

letting ψ ∈ D(Ω) and take wεδψ as a test function in (2.2), where wεδ is given in Proposition

3.13. Then, (2.2) is equivalent to∫
Ωεδ

Aε(x, uεδ)∇uεδ∇wεδψ dx+

∫
Ωεδ

Aε(x, uεδ)∇uεδwεδ∇ψ dx

=

∫
Ωεδ

fwεδψ dx+

∫
∂Bεδ

gεδwεδψ dσ.
(4.7)

This choice of test function implies that the unfolding criterion in Proposition 3.9 (viii) is

satisfied.

For the first integral in the left-hand side of this equation, unfolding by Tε,δ together

with Propositions 3.9 (i) and 3.13, one has∫
Ωεδ

Aε(x, uεδ)∇uεδ∇wεδψ dx

Tε,δ≃ δN
∫
Ω×RN

Tε,δ(Aε(x, uεδ))Tε,δ(∇uεδ)Tε,δ(∇wεδ)Tε,δ(ψ) dxdz

= δN
∫
Ω×RN

Tε,δ(Aε(x, uεδ))Tε,δ(∇uεδ)
[
− 1

εδ
∇zv

]
Tε,δ(ψ) dxdz

= −δ
N−1

ε

∫
Ω×RN

Tε,δ(Aε(x, uεδ))Tε,δ(∇uεδ)∇zvTε,δ(ψ) dxdz

= −δ
N
2 −1

ε

∫
Ω×RN

Tε,δ(Aε(x, uεδ))
[
δ

N
2 Tε,δ(∇uεδ)

]
Tε,δ(ψ)∇zv dxdz.

By (H4), (4.2), (4.3), and the convergences (for more details, see [9]),

δ
N
2 −1

ε
∇z

(
Tε,δ(uεδ)

)
1 1

δY
= δ

N
2 Tε,δ(∇uεδ)⇀ ∇zU weakly in L2(Ω×RN ), (4.8)

with

Tε,δ(ψ)∇zv → ψ∇zv strongly in L2(Ω×RN ),

let us pass to the limit so that

lim
ε→0

∫
Ωεδ

Aε(x, uεδ)∇uεδ∇wεδψ dx = −λ
∫
Ω×(RN\B)

A(z, u0)∇zU(x, z)ψ∇zv(z) dxdz.(4.9)
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For the second integral in the left-hand side of (4.7), unfolding by Tε gives∫
Ωεδ

Aε(x, uεδ)∇uεδwεδ∇ψ dx
Tε≃
∫
Ω×Y

Tε(Aε(x, uεδ))Tε(∇uεδ)Tε(wεδ)Tε(∇ψ) dxdy.

By (4.1), (4.3), Propositions 3.2 (vii) and 3.13 one can pass to the limit to get

lim
ε→0

∫
Ωεδ

Aε(x, uεδ)∇uεδwεδ∇ψ dx = v(B)

∫
Ω×Y

A(y, u0)(∇u+∇yû)∇ψ dxdy. (4.10)

For the first term in the right-hand side of (4.7), unfolding again by Tε we have∫
Ωεδ

fwεδψ dx
Tε≃
∫
Ω×Y

Tε(f)Tε(wεδ)Tε(ψ) dxdy.

By (H2) and Proposition 3.13, one can pass to the limit to obtain

lim
ε→0

∫
Ωεδ

fwεδψ dx = v(B)

∫
Ω

fψ dx. (4.11)

For the second term in the right-hand side of (4.7), unfolding by T b
εδ Proposition 3.11

yields ∫
∂Bεδ

gεδwεδψ dσ =
δN−1

ε

∫
RN×∂B

T b
εδ(gεδ)T b

εδ(wεδ)T b
εδ(ψ) dxdσz

= δ
N
2

(
δ

N
2 −1

ε

)∫
RN×∂B

T b
εδ(gεδ)T b

εδ(wεδ)T b
εδ(ψ) dxdσz.

By (H4), Propositions 3.12 and 3.13 we get the limit

lim
ε→0

∫
∂Bεδ

gεδwεδψ dσ = 0. (4.12)

Thus, passing to the limit in (4.7) through (4.9), (4.10), (4.11), and (4.12) we get the limit

equation given by


−λ
∫
Ω×(RN\B)

A(z, u0)∇zU(x, z)∇zv(z)ψ dxdz

+v(B)

∫
Ω×Y

A(y, u0)∇ψ(∇u0 +∇yû) dxdy = v(B)

∫
Ω

fψ dx.

(4.13)

which by density holds for all ψ ∈ H1
0 (Ω) and v ∈ KB . When v(B) = 0, we get (4.5).

Moreover, when v(B) ̸= 0, by integration by parts in the first term in (4.13),
−λv(B)

∫
Ω×∂B

A(z, u0)∇zUνBψ dxdσz

+v(B)

∫
Ω×Y

A(y, u0)∇ψ(∇u0 +∇yû) dxdy = v(B)

∫
Ω

fψ dxdy,

from which (4.6) directly follows.
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Let us now obtain the corresponding limit problem which represents the asymptotic
behavior of problem (1.1). To this goal, we first introduce the homogenized N ×N matrix

Ahom = (ahomij ) ∈ M(α, β
2

α ,Ω) (see [4] for the details of the properties ) given by

ahomij (x) =

∫
Y

(
aij(y, u0(x))−

N∑
k=1

aik(y, u0(x))
∂χ̂j

∂yk
(y, u0(x))

)
dy, (4.14)

where the correctors χ̂j for j = 1, . . . , N (for more details, see e.g. [2]) solve the following
cell problems: 

χ̂j ∈ L∞(Ω;H1
per(Y )),∫

Y

A(y, u0)∇(χ̂j − yj)∇φ = 0 a.e. in Ω,

∀φ ∈ H1
per(Y ).

Also, let χ be the solution of the cell problem corresponding to the holes δB given by
χ ∈ L∞(Ω;KB), χ(x,B) ≡ 1,∫
RN\B

tA(z, u0)∇zχ(x, z)∇zΨ(z) dz = 0 a.e. in Ω,

∀Ψ ∈ KB with Ψ(B) = 0.

Set the function

Θ(x) =

∫
RN\B

tA(z, u0)∇zχ(x, z)∇zχ(x, z) dz, (4.15)

which is nonnegative and can be interpreted as the local capacity of the set B.
The limit problem corresponding to (1.1) is given by the next corollary.

Corollary 4.3. The limit function u0 ∈ H1
0 (Ω) is the unique solution of the limit problem −div(Ahom∇u0) + λ2Θu0 = f in Ω,

u0 = 0 on ∂Ω.
(4.16)

Proof. By using standard arguments (see e.g. [10]), one gets

û(x, y) =

N∑
j=1

∂u0
∂xj

(x)χ̂j(y, u0(x)). (4.17)

Equipping this in (4.6), in view of (4.14), one gets∫
Ω

Ahom∇u0∇ψ dx− λ

∫
Ω×∂B

A(z, u0)∇zUνBψ dxdσz =

∫
Ω

fψ dx.

By integrating by parts the second term on the left-hand side above, since ∇zU = ∇z(U −
λu), using (4.15), we obtain∫

Ω

Ahom∇u0∇ψ dx+ λ2
∫
Ω

Θu0ψ dx =

∫
Ω

fψ dx, (4.18)

which is the weak formulation of (4.16). The Lax-Milgram theorem and the fact that Θ(x)

is nonnegative provides the well-posedness of (4.16).
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Remark 4.4. The oscillations in the matrix give rise to the classical homogenized matrix

Ahom in the limit problem. The set of holes Bεδ becomes negligible at the limit. The

geometry of the domain gives rise to the zero-order strange term λ2Θu0.

We observe that in the limit problems obtained in [1] for domains with two small holes,

both a strange term and an average of a Neumann data appear. When one considers the

special case of the problem in [1] restricted to the Neumann boundary condition, one gets

the asymptotic behavior corresponding to the quasilinear version of the problem from [26],

and if it is restricted to the Dirichlet boundary condition, one obtains the homogenization

results for the quasilinear version of the problem treated in [9]. Let us compare these two

special cases with the present asymptotic analysis.

For the first special case, let us point out that the homogenization results for the Neu-

mann critical situation in [26] are different from the present work for the Dirichlet critical

case since the former has no strange term in the limit problem but with an average term for

the function g, while the latter is in presence of a strange term but with zero contribution

from g. The present results are more similar to the second special case (cf. [9]) in a way that

both works admit a strange term in the limit problem. This further implies that when in

presence of Dirichlet critical holes, the homogenization results obtained for problems with

Neumann boundary condition is the same when one initially treats a corresponding version

with Dirichlet boundary condition.

5 A Corrector Result

This section is devoted to the convergence of the energy associated to problem (1.1) and
consequently, the corrector result.

To proceed, we need the following lemma (see e.g. [8]).

Lemma 5.1. Let {Dε}ε be a sequence of N ×N matrix fields in M(α, β,O) for some open

set O such that Dε → D almost everywhere on O (or more generally, in measure in O). If

the sequence of vector fields {ζε}ε converges weakly to ζ in L2(O)N , then

lim inf
ε→0

∫
O
Dεζεζε dx ≥

∫
O
Dζζ dx.

Furthermore if,

lim sup
ε→0

∫
O
Dεζεζε dx ≤

∫
O
Dζζ dx,

then

lim
ε→0

∫
O
Dεζεζε dx =

∫
O
Dζζ dx and ζε → ζ strongly in L2(O)N .
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Next, we introduce the domain Ωε
√
δ =

{
x ∈ Ω

∣∣ {x
ε

}
Y

∈ Y√δ

}
with the perforated

reference cell Y√δ = Y \
√
δ B.

The next theorem provides the energy convergence.

Theorem 5.2. Under the assumptions of Theorem 4.2 and Corollary 4.3, one has

lim
ε→0

∫
Ωεδ

Aε∇uεδ∇uεδ dx =

∫
Ω

Ahom∇u0∇u0 dx+ λ2
∫
Ω

Θu20 dx

=
1

|Y |

∫
Ω×Y

A(y, u0)(∇u0 +∇yû)(∇u0 +∇yû) dx dy

+
λ2

|Y |

∫
Ω×(RN\B)

A(z, u0)∇zU ∇zU dxdz,

(5.1)

and

lim
ε→0

∫
Λε

|∇uεδ|2 dx = 0. (5.2)

Moreover, we also have the following strong convergences

Tε(∇uεδ)1Ω×Y√δ
→ ∇u0 +∇yû strongly in L2(Ω× Y )N , (5.3)

δ
N
2 −1

ε
∇zTε,δ(uεδ)1 1√

δ
B → ∇zU strongly in L2(Ω×RN )N . (5.4)

Proof. Let v = uεδ be test functions in (2.2). Then,∫
Ωεδ

Aε∇uεδ∇uεδ dx =

∫
Ωεδ

fuεδ dx+

∫
∂Bεδ

gεδuεδ dσ. (5.5)

Unfolding the left-hand side of (5.5) using Tε, we obtain

1

|Y |

∫
Ω×Y

Tε(Aε)Tε(∇uεδ)Tε(∇uεδ) dx+

∫
Λε

Aε∇uεδ∇uεδ dx

=

∫
Ωεδ

fuεδ dx+

∫
∂Bεδ

gεδuεδ dσ.

(5.6)

Now, to investigate the convergence of the energy, we transform the first term in the

left-hand side of (5.6) with a change of variable y = δz and use Proposition 3.9 (v) to obtain

1

|Y |

∫
Ω×Y√δ

Tε(Aε)Tε(∇uεδ)Tε(∇uεδ) dx dy

+
δN

|Y |

∫
Ω× 1√

δ
B

Tε,δ(Aε)

[
1

εδ
∇zTε,δ(uεδ)

] [
1

εδ
∇zTε,δ(uεδ)

]
dx dz

+

∫
Λε

Aε∇uεδ∇uεδ dx =

∫
Ωεδ

fuεδ dx+

∫
∂Bεδ

gεδuεδ dσ.

(5.7)
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For conciseness in (5.7), we set

Aεδ =
1

|Y |

∫
Ω×Y√δ

Tε(Aε)Tε(∇uεδ)Tε(∇uεδ) dx dy,

Bεδ =
1

|Y |

∫
Ω× 1√

δ
B

Tε,δ(Aε)

[
δ

N
2 −1

ε
∇zTε,δ(uεδ)

][
δ

N
2 −1

ε
∇zTε,δ(uεδ)

]
dx dz,

Cεδ =

∫
Λε

Aε∇uεδ∇uεδ dx.

(5.8)

By Proposition 3.2 (vii) and (4.8), we have the convergences

Tε(∇uεδ)1Ω×Y√δ
→ ∇u0 +∇yû weakly in L2(Ω× Y )N ,

δ
N
2 −1

ε
∇zTε,δ(uεδ)1 1√

δ
B → ∇zU weakly in L2(Ω×RN )N .

(5.9)

Taking in ψ = u0 in (4.18), using Theorem 5.1 together with (5.5), (5.6), (5.8), and (5.9)

yield

∫
Ω

fu0 dx =
1

|Y |

∫
Ω×Y

A(y, u0)(∇u0 +∇yû)(∇u0 +∇yû) dx dy

+
1

|Y |

∫
Ω×(RN\B)

A(z, u0)∇zU(x, z)∇zU(x, z) dx dz

≤ lim inf
ε→0

Aεδ + lim inf
ε→0

Bεδ ≤ lim inf
ε→0

(Aεδ + Bεδ)

= lim inf
ε→0

(∫
Ωεδ

Aε∇uεδ∇uεδ dx− Cεδ

)

≤ lim sup
ε→0

(∫
Ωεδ

Aε∇uεδ∇uεδ dx− Cεδ

)
≤ lim sup

ε→0

∫
Ωεδ

Aε∇uεδ∇uεδ dx

= lim
ε→0

(∫
Ωεδ

fuεδ dx− εγ
∫
Γδ,ε

hδ,ε(uεδ − uεδ)(uεδ − uεδ) dσx

)
=

∫
Ω

fu0 dx,

(5.10)

which implies that these inequalities are actually equalities. Hence, equations (5.1) and

(5.2) hold true. Finally, the convergences in (5.3) and (5.4) follow from (5.10) and with the

application of some properties of limits as well as lim sup and lim inf .

Corollary 5.3. Under the assumption of Theorem 5.2, we have the corrector result.∥∥∥∥∥∥∇uεδ1Ωε
√

δ
−∇u0 −

N∑
j=1

Uε

(
∂u0
∂xj

)
Uε (∇yχ̂j(x, y))

∥∥∥∥∥∥
L2(Ωεδ)

→ 0, (5.11)
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and

∥∇uεδ∥L2(Ωεδ\Ωε
√

δ)
→ 1

|Y |1/2
∥∇zU∥L2(Ω×RN ) . (5.12)

Furthermore,

δ
N
2 −1

ε
Tε,δ(uεδ) → U strongly in L2(Ω;L2

loc(R
N )). (5.13)

Proof. In view of (4.17), one has

∇yû = ∇y

N∑
j=1

∂u0
∂xj

χ̂j(x, y) =

N∑
j=1

∂u0
∂xj

∇yχ̂j(x, y).

This along with (5.2), (5.3), Propositions 3.6 and 3.7, and triangle inequality yield∥∥∥∥∥∥∇uεδ1Ωε
√

δ
−∇u0 −

N∑
j=1

Uε

(
∂u0
∂xj

)
Uε (∇yχ̂j(x, y))

∥∥∥∥∥∥
L2(Ωεδ)

=
∥∥∥∇uεδ1Ωε

√
δ
−∇u0 − Uε(∇yû)

∥∥∥
L2(Ωεδ)

≤
∥∥∥∇uεδ1Ωε

√
δ
− Uε(∇u0)− Uε(∇yû)

∥∥∥
L2(Ωεδ)

+ ∥Uε(∇u0)−∇u0∥L2(Ωεδ)
→ 0,

which implies (5.11). Let us prove (5.12). Indeed, from Proposition 3.9 (v), (H4), and (5.4)

we have by unfolding

lim
ε→0

∥∇uεδ∥2L2(Ωεδ\Ωε
√

δ)
= lim

ε→0

δN

|Y |

∫
Ω× 1√

δ
B

Tε,δ(∇uεδ)Tε,δ(∇uεδ) dx dz

= lim
ε→0

1

|Y |

∫
Ω× 1√

δ
B

[
δ

N
2 −1

ε
∇zTε,δ(uεδ)

][
δ

N
2 −1

ε
∇zTε,δ(uεδ)

]
dx dz

=
1

|Y |

∫
Ω×RN

∇zU∇zU dxdz =
1

|Y |
∥∇zU∥2L2(Ω×RN ) .

Finally, we prove (5.13). Let ω be an open and bounded set and choose R > 0 such that

ω ∪B ⊂ B(O,R), the ball in RN with center at O of radius R. Also, a Poincaré inequality

holds on the space B(O,R). By Definition 3.8 and since Ω̂ε = Ω \ Λε, we obtain∥∥∥∥∥δ
N
2 −1

ε
Tε,δ(uεδ)− U

∥∥∥∥∥
2

L2(Ω̂ε×B(O,R))

=

∥∥∥∥∥δ
N
2 −1

ε
Tε,δ(uεδ)− U

∥∥∥∥∥
2

L2(Ω×B(O,R))

−

∥∥∥∥∥δ
N
2 −1

ε
Tε,δ(uεδ)− U

∥∥∥∥∥
2

L2(Λε×B(O,R))

≤ C

∥∥∥∥∥δ
N
2 −1

ε
∇zTε,δ(uεδ)−∇zU

∥∥∥∥∥
2

L2(Ω×B(O,R))

+ ∥∇zU∥2L2(Λε×B(O,R)) + ∥U∥2L2(Λε×B(O,R))

 ,
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where C is a generic constant.

For δ small enough, ω ⊂ B(O,R) ⊂ 1√
δ
B. This and when (5.4) is applied to the first

term in the right-hand side, and since U = 0 in Ω × B, then the left-hand side above

approaches zero and so we obtain

δ
N
2 −1

ε
Tε,δ(uεδ) → U strongly in L2(Ω× ω),

which yields (5.13).
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