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Abstract

Amodel of two oscillators represented by a system of mutually delay-coupled Stuart-
Landau equations that are fully symmetric is examined. In this study, we focused on
symmetric solutions of the system. Particularly, we used a group-theoretic approach
to obtain the relative equilibria and the relative periodic solutions. By varying the
coupling phase, numerical continuation is performed to generate the two branches of
symmetric relative equilibria. For a branch of symmetric relative equilibria, symmetry-
preserving and symmetry-breaking steady-state and Hopf bifurcations are identified.
These classification of bifurcations followed from the isotypic decomposition of the
physical space corresponding to the system of oscillators. Emanating branch of rela-
tive equilibria and relative periodic solutions with broken symmetry from symmetry-
breaking steady-state and Hopf bifurcations, respectively, are generated. Moreover,
branch of relative periodic solutions emanating from Hopf bifurcations had preserved
or broken symmetry depending on the classification of the Hopf bifurcation. These
findings emphasized how the symmetry approach organized the way of looking for so-
lutions to the two-oscillator system. Solutions with full symmetry are first obtained
then solutions with lesser symmetry are then found through symmetry-breaking bifur-
cations. Finally, branches of fold and Hopf bifurcations are generated by performing
two-parameter continuation.

Keywords: Stuart-Landau Oscillators, Equivariant Dynamical System,
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1 Introduction

Oscillations can be pictured as a recurring pattern. These are very common in the natural
world and in artificial creations. Examples seen in nature are the beating of the heart,
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menstrual cycles, firing of neurons, glowing of fireflies, and the chirping of crickets. With the
objective of investigating and analyzing oscillating behavior, researchers developed models
of oscillators such as the Lorenz system [1], Lang-Kobayashi equations [2], Lotka-Volterra
equations [3], and Stuart-Landau equations [4], among others. These models put forward a
way to study repetitive and collective behavior, which contribute to different fields of science
and engineering [5].

One main motivation for the study of oscillator systems is their ability to coordinate
their movement or synchronize as a result of interaction. Comprehension of the mechanisms
underlying in the synchronization of oscillator systems found in nature resulted in the study
of collective behavior of coupled oscillators [6]. It was observed that coupled oscillators are
able to synchronize under different types and strength of coupling [7, 8, 9]. Theoretically,
the study of solutions to oscillator systems that possess a certain kind of synchrony presents
a systematic way of finding other solutions through symmetry breaking. In this study, we
considered a symmetric system of two mutually delay-coupled Stuart-Landau oscillators with
the aim of classifying the symmetry of its solutions. We used a group theoretic approach
to show that the symmetry of the solutions follow from the symmetry of the system of
equations representing the coupled oscillators. Also, we perform numerical continuation
and bifurcation analysis to generate branches of solutions with different symmetries.

2 Symmetric Two-Oscillator System

In this section, we present the model of two mutually delay-coupled Stuart-Landau (SL)
oscillators that are completely symmetric [10] and examine the properties of both the model
and its solutions. Particularly, we are going to describe the symmetry of the model and
characterize its symmetric solutions.

The model is represented by the system of SL equations given by{
ȧ1 = a1(1− |a1|2) + iβa1|a1|2 + keiCpa2(t− τ)
ȧ2 = a2(1− |a2|2) + iβa2|a2|2 + keiCpa1(t− τ),

(1)

where β is the coupling between amplitude and phase, k is the coupling strength, Cp is the
coupling phase, and τ is the delay in coupling.

2.1 Symmetry Group and its Isotropy Subgroups

We claim that system (1) has symmetry group isomorphic to Z2 × S1. To show this, we

note that a homomorphism ρ : Z2 = ⟨γ⟩ → GL(2,C) defined by e 7→ I2, γ 7→
[

0 1
1 0

]
,

is a representation of Z2 on C2. The action of γ on [a1, a2]
⊤ ∈ C2 is then given by γ ·

[a1, a2]
⊤ = [a2, a1]

⊤. Moreover, the homomorphism ϕ : S1 → GL(2,C) defined by eiθ 7→
eiθI2 is a representation of S1 on C2. The action of eiθ on [a1, a2]

⊤ ∈ C2 is then given by
eiθ · [a1, a2]⊤ = [eiθa1, e

iθa2]
⊤. Now, if we define f : C2 → C2 by f([a1, a2]

⊤) = [ȧ1, ȧ2]
⊤,

then f(γ · [a1, a2]⊤) = γ · [ȧ1, ȧ2]⊤ and f(eiθ · [a1, a2]⊤) = eiθ · [ȧ1, ȧ2]⊤. Therefore, system
(1) has symmetry group isomorphic to Z2 × S1.

The isotropy subgroups of Zn×S1 are twisted subgroups [11]. In particular, the maximal
nontrivial isotropy subgroups of Z2 × S1 are isomorphic to Z2. They are Z2(γ) := ⟨γ, ei2π⟩
and Z2(γ, π) := ⟨γ, eiπ⟩ [12]. Figure 1 presents the lattice diagram of the maximal isotropy
subgroups of Z2 × S1.
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Z2 × S1

Z2(γ)
��

Z2(γ, π)
��

⟨1⟩
����

Figure 1: Isotropy subgroup lattice diagram of Z2 × S1.

2.2 Symmetric Relative Equilibria

The S1-symmetry of system (1) brings about relative equilibria (RE) of the form

a1(t) = r1e
iωt+iσ1

a2(t) = r2e
iωt+iσ2 ,

(2)

which are solutions with period 2π/ω [13]. Here, r1, r2 ≥ 0 are the amplitudes, ω is the
frequency, and σ1, σ2 are phase shifts. These are also called rotating/continuous waves.
Such form of basic solutions that were considered in Lang-Kobayashi system of oscillators
are called compound laser modes [12, 14].

Our goal is to find the symmetric RE of the form given in (2). These are the rotating
waves that are fixed by a particular isotropy subgroup. Note that the fixed-point subspace of
Z2(γ) is Fix(Z2(γ)) = {[a, a]⊤ ∈ C2|a = reiωt+iσ} and the fixed-point subspace of Z2(γ, π)
is Fix(Z2(γ, π)) = {[a,−a]⊤ ∈ C2|a = reiωt+iσ}. We call the elements of Fix(Z2(γ)) as the
in-phase RE and the elements of Fix(Z2(γ)) as the anti-phase RE.

To find in-phase RE, we substitute ansatz a1 = a2 = reiωt+iσ to system (1). We get,
iω = 1 − r2 + iβr2 + k cos(Cp − ωτ) + ik sin(Cp − ωτ). The real and imaginary parts,
r2 = 1+ k cos(Cp − ωτ) and ω = βr2 + k sin(Cp − ωτ), respectively, are combined to get
ω = β + k(β cos(Cp − ωτ)) + sin(Cp − ωτ)). Using the identity,

α cosϑ+ sinϑ =
√

1 + α2 sin(ϑ+ arctan(α)) for α ≥ 0,

we have that

ω = β + k
√

1 + β2 sin(Cp − ωτ + arctan(β)). (3)

Similarly, to get anti-phase RE, we substitute ansatz a1 = reiωt+iσ and a2 = −a1 to
system (1). We get,

ω = β − k
√

1 + β2 sin(Cp − ωτ + arctan(β)). (4)

Note that ω given by equations (3) and (4) always exists since its value(s) is(are) the
intersection(s) of a diagonal line passing at the origin and a sine wave. When the value of
ω is known in equations (3) and (4), then the value of r can be computed. In particular,



52 Domogo, A. A. and Collera, J. A.

r =
√
1 + k cos(Cp − ωτ) and r =

√
1− k cos(Cp − ωτ) for the in-phase and anti-phase RE,

respectively. The values for ω and r will then correspond to a RE. In summary, we have
the following theorem whose proof is given by the derivations above.

Theorem 2.1. The RE of system (1) with Z2(γ) and Z2(γ, π) symmetry can be obtained

by solving for ω in equations (3) and (4), respectively. In particular, in-phase RE are given

by

a1 = a2 = reiωt+iσ

where r =
√
1 + k cos(Cp − ωτ) and anti-phase RE are given by

a1 = reiωt+iσ and a2 = reiωt+iσ+iπ = −a1

where r =
√
1− k cos(Cp − ωτ).

Note that these formulas for ω for the in-phase and anti-phase solutions are already
presented in [10]. In this study, we demonstrated how these formulas follow from our
classification of solutions of the system through a group-theoretic approach.

2.3 Branches of Symmetric Relative Equilibria

We utilize Theorem 2.1 to calculate the symmetric RE for system (1). Here, we use the fol-
lowing parameter values: β = 4, k = 0.7, Cp = 0, and τ = 3. We perform the computations
in Matlab by modifying a program developed by Erzgraber et al. for a two-laser system [14].
Once a symmetric RE is found using Theorem 2.1, we then perform numerical continuation
using DDE-Biftool [15, 16] by varying Cp. We choose Cp as the continuation parameter
because system (1) has 2π-translational symmetry in Cp. The 2π-translational symmetry
permits us to observe a whole branch, looking at its stability and bifurcation points, for
Cp varied on an interval of length 2π. Figure 2 presents the branch of in-phase RE in the
(ω, r)-plane while Figure 3 presents in-phase and anti-phase RE in the (Cp, r)-plane
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Figure 2: Branch of in-phase RE in the (ω, r)-plane. The four dots with (ω, r) values approx-

imately given by (2.6930, 0.9186), (3.5289, 0.8495), (4.5650, 1.1399), and (6.3982, 1.2879),

correspond to the in-phase RE calculated using Theorem 2.1. The branch of in-phase and

anti-phase RE overlap in this plane.
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Figure 3: Branch of in-phase (blue curve) and anti-phase (red curve) RE in the (Cp, r)-

plane. The curves are half a period (π) out of phase. The anti-phase branch is basically the

same as the in-phase branch except for the π translation.

3 Classification of Codimension-One Bifurcations

The codimension-one bifurcations of system (1) can be obtained numerically using DDE-
Biftool. However, further classification of these bifurcations into symmetry-breaking or
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symmetry-preserving is possible through a group-theoretic approach. We will discuss this
approach in this section.

Note that DDE-Biftool is able to analyze the stability of RE and can identify steady-
state and Hopf bifurcation points as shown in Figure 4. However, there is no classification
of bifurcations obtained from this numerical result.
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Figure 4: Stability plot for the branch of in-phase RE in the (ω, r)-plane obtained using

DDE-Biftool. The stable part is colored green while the unstable part is colored magenta.

Moreover, steady-state (+) and Hopf bifurcation points (∗) are identified.

In the following discussion, we provide a classification of these bifurcation points into
symmetry-breaking or symmetry preserving. This can be done by looking at the isotypic
decomposition of the physical space corresponding to the system of Stuart-Landau equa-
tions. Previous studies involving coupled symmetric systems have used this group-theoretic
approach [11, 12, 17, 18].

Theorem 3.1. Let V1 and V2 be subspaces of R4 with basis elements v1 = v · [1, 1]⊤ and

v2 = v · [−1, 1]⊤, respectively, where v ∈ R2, then Z2(γ) lies in the isotropy subgroup of

solutions (of system (1) near an in-phase RE) coming from V1.

Proof. We first linearize system (1) around an in-phase RE. Note that a general solution

of system (1) can be written in the form ai(t) = ri(t)e
iϕi(t), i = 1, 2. Using this notation,

system (1) in polar form is given by

ṙi(t) = ri(t)(1− r2i (t)) + kri+1(t− τ) cos(Cp + ϕi+1(t− τ)− ϕi(t))

ϕ̇i(t) = βr2i (t) + k ri+1(t−τ)
ri(t)

sin(Cp + ϕi+1(t− τ)− ϕi(t)),

which can be written in the form Ẋ(t) = F (X(t), Y (t)) whereX(t) = [r1(t), ϕ1(t), r2(t), ϕ2(t)]

and Y (t) = X(t − τ). To get the linear variational equation around an in-phase RE, we

compute M1 := ∂F
∂X and M2 := ∂F

∂Y where both matrices are evaluated at an in-phase RE.
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We get M1 =

 Ā 0

0 Ā

 , where Ā =

 1− 3r2 kr sin(Cp − ωτ)

2βr − k
r sin(Cp − ωτ) −k cos(Cp − ωτ)

 and

M2 =

 0 B̄

B̄ 0

 , where B̄ =

 k cos(Cp − ωτ) −kr sin(Cp − ωτ)

k
r sin(Cp − ωτ) k cos(Cp − ωτ)

 . The linear varia-

tional equation around an in-phase RE is then given by Ẋ(t) = M1X(t) +M2X(t− τ) and

the corresponding characteristic equation is det∆(λ) = 0 where ∆(λ) = λI−M1−e−λτM2.

If we let A := λI − Ā and B := −e−λτ B̄, then L := ∆(λ) =

 A B

B A

 .

Now, our objective is to block diagonalize L. This simplifies the computation of eigen-

values by dealing with smaller matrices. Moreover, it provides the needed classification

of the codimension-one bifurcations. We begin by noting that Z2(γ) acts irreducibly on

the subspaces V1 and V2 with basis elements v1 = v · [1, 1]⊤ and v2 = v · [−1, 1]⊤, re-

spectively, where v ∈ R2. Observe that L(v1) =

 A B

B A

 v

v

 =

 (A+B)v

(A+B)v

 and

L(v2) =

 A B

B A

 −v

v

 =

 (A−B)(−v)

(A−B)v

 Hence, we obtain the block-diagonalized

form

 A+B 0

0 A−B

 .

Note that the action of Z2(γ) decomposes the physical space R4 into V1⊕V2. As observed

in the block diagonalization process, the block A+B corresponds to the action of L on V1

and the block A−B corresponds to the action of L on V2. If the critical eigenvalue γ comes

form A + B, we get bifurcations with symmetry Z2(γ) because Z2(γ) acts trivially on V1.

To say it in another way, Z2(γ) lies in the isotropy subgroup of solutions coming from V1.

Moreover, since the symmetry is preserved, we expect saddle-node bifurcations [12, 17]. If

the critical eigenvalue γ comes from the block A−B, we get symmetry breaking bifurcations

because Z2(γ) does not act trivially on V2. Moreover, since the action of Z2(γ) on V2 is of

order 2 and symmetry is broken, we expect pitchfork bifurcations [12, 17, 19].

3.1 Steady-State Bifurcations

To find steady-state bifurcations along the branch of in-phase RE we look for the values
of Cp at the intersection of the transcendental equation (3) corresponding to an in-phase
RE and det∆(λ)|λ=0 = 0. Note that det∆(λ)|λ=0 = 0 is equivalent to |A + B|λ=0 = 0 or
|A−B|λ=0 = 0. We have that |A+B|λ=0 and |A−B|λ=0 are given by

|A+B|λ=0 = (1 + kτ cos(Cp − ωτ))(−1 + 3r2 − k cos(Cp − ωτ))
− 2βr2kτ sin(Cp − ωτ)
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and

|A−B|λ=0 = 2k{[cos(Cp − ωτ)][−1 + 3r2] + k
− 2βr2 sin(Cp − ωτ) + k sin2(Cp − ωτ)}.

The intersections of equation (3) with |A+B|λ=0 = 0 and |A−B|λ=0 = 0 are shown in
Figure 5.
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Figure 5: (Left Panel): Intersection of the branch of in-phase RE (blue curve) with the

orange curve corresponding to |A + B|λ=0 = 0, which occurs at ω ≈ 1.1331 and 6.8668.

(Right Panel): Intersection of the branch of in-phase RE (blue curve) with the orange curve

corresponding to |A−B|λ=0 = 0, which occurs at ω ≈ 1.5253 and 6.8706.

3.2 Hopf Bifurcations

To find Hopf bifurcations along the branch of in-phase RE, we look for Cp values satisfying
the transcendental equation (3) corresponding to an in-phase RE and det∆(λ)|λ=iα = 0.
Note that det∆(λ)|λ=iα = 0 is equivalent to |A+B|λ=iα = 0 or |A−B|λ=iα = 0. First, we
solve for Cp in equation (3). The distinct Cp values modulo 2π are given by the following.

Cp =arcsin

(
ω − β

k
√

1 + β2

)
+ωτ − arctan(β) (5)

Cp =π − arcsin

(
ω − β

k
√

1 + β2

)
+ωτ − arctan(β) (6)

We substitute Cp given in equations (5) and (6) to the equations |A + B|λ=iα = 0 and
|A − B|λ=iα = 0 to get equations in C that are dependent on α and ω. For the resulting
equations, the intersection of the real part and imaginary part equated to zero will give us
the ω values where Hopf bifurcations occur. These intersections are shown in Figure 6 and
7.
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Figure 6: Intersection of the real part (blue curve) and imaginary part (red curve) of |A+

B|λ=iα = 0 for Cp given by equation (5) (left panel) and (6) (right panel). In total, we get

two intersections corresponding to symmetry-preserving Hopf bifurcations, which occurs at

ω ≈ 5.1850 (left panel) and 1.2599 (right panel).
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Figure 7: Intersection of the real part (blue curve) and imaginary part (red curve) of |A−
B|λ=iα = 0 for Cp given by equation (5) (left panel) and (6) (right panel). In total, we get

three intersections corresponding to symmetry-breaking Hopf bifurcations, which occurs at

ω ≈ 1.1443, 4.3851, and 5.5399 (left panel) and none in the right panel.

Overall, we were able to find 4 steady-state and 5 Hopf bifurcations along the branch
of in-phase RE. Classification of these bifurcations into symmetry-preserving or symmetry-
breaking is shown in Figure 8. Using a similar process, classification of steady-state and
Hopf bifurcation points along the branch of anti-phase RE can be located and classified. In
the (ω, r)-plane we get the same figure as in Figure 8. In the (Cp, r)-plane we get the same
figure except for a translation of π.
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Figure 8: Classification of steady-state (+) and Hopf (∗) bifurcation points along the branch

of in-phase RE. Symmertry-preserving bifurcations are colored blue and symmetry-breaking

bifurcations are colored black.

3.3 Branches of Relative Equilibria and Relative Periodic Solutions

We now obtain the branches of RE and relative periodic solutions from the classified bifurca-
tions in the previous section. Particularly, we generate the emanating branch of RE from the
pitchfork bifurcations, and the branches of relative periodic solutions emanating from Hopf
bifurcations. From section 3, we expect pitchfork bifurcations from the symmetry-breaking
steady-state bifurcation points. We use this knowledge to generate an emanating branch of
RE with no symmetry. This is performed in DDE-Biftool and this new branch of RE is pre-
sented in Figure 9. Moreover, relative periodic solutions emanating from Hopf bifurcation
are also generated in DDE-Biftool. Figure 10 presents these branches of relative periodic
solutions where their symmetry is preserved or broken depending on the classification of the
Hopf bifurcation.
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Figure 9: Bifurcating branch of RE with no symmetry (black curve) emanating from pitch-

fork bifurcations.
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Figure 10: Bifurcating branches of relative periodic solutions emanating from Hopf bifur-

cations. Relative periodic solutions emanating from symmetry-preserving bifurcations have

equal amplitude while those emanating from symmetry-breaking bifurcations have ampli-

tude which are half a period translated.

3.4 Two-parameter Continuation

Lastly, branches of steady-state fold and Hopf bifurcations can be obtained numerically by
performing two-parameter continuation in DDE-Biftool. We vary the parameters k and Cp

and plot on the (Cp, r)-plane the generated branch of steady-state fold bifurcations of RE
(Figure 11) and branches of Hopf bifurcations of RE (Figure 12). In Figure 13, branches
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of fold and Hopf bifurcations points are plotted in the two-parameter space to show the
changes in numbers of these bifurcations depending on the values of the parameters.
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Figure 11: Continuation of fold bifurcations (blue curve) of RE generated by varying k and

Cp.
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Figure 12: Continuation of Hopf bifurcations (dotted curves) of RE generated by varying k

and Cp.
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Figure 13: Branches of fold (blue) and Hopf (red) bifurcation points generated by varying

k and Cp. The points in the black line are the k and Cp values corresponding to the branch

of RE where we have performed classification of codimension-one bifurcations.

4 Summary

In summary, we have obtained RE and relative periodic solutions to the system of two
oscillators described by Stuart-Landau equations by considering the isotropy subgroups of
symmetry group of the system. This led to obtaining the RE that are in-phase and anti-
phase. Numerical continuation in DDE-Biftool generated branches of RE that are in-phase
and anti-phase. Along the branch of in-phase RE, steady-state and Hopf bifurcations are
determined and then classified into symmetry-preserving or symmetry-breaking. Here, the
characteristic matrix of the linear variational equation around an in-phase RE was block
diagonlized using the isotypic decomposition of the physical space corresponding to the
system of oscillators. The classification of the bifurcations into symmetry-preserving or
symmetry-breaking follows from these block diagonalization. In DDE-Biftool, emanating
branch of RE with no symmetry are generated from symmetry-breaking steady-state bifur-
cations, i.e. pitchfork bifurcations, and emanating branch of relative periodic solutions are
generated from Hopf bifurcations. Moreover, emanating branch of relative periodic solution
showed that the oscillators have equal amplitude if they arise from symmetry-preserving
Hopf bifurcations and have amplitude that are half a period translated if they arise from
symmetry-breaking Hopf bifurcations. Lastly, branches of fold and Hopf bifurcations are
generated by varying the coupling strength and coupling phase.
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patterns: from network motifs to hierarchical networks. Philosophical Transactions
Royal Society A, 375:20160216, 2017.

[8] A. Domogo and J. Collera. Symmetric solutions to a system of mutually delay-
coupled oscillators with conjugate coupling. Journal of Physcis: Conference Series,
1123(012028), 2018.

[9] S. Tajima, H. Singh, S. Nakabayashi, T. Singla, and P. Parmananda. The emergence of
synchrony behavior in weakly coupled electrochemical oscillators via a ’metallic plate’.
Journal of Electroanalytical Chemistry, 769:16–20, 2016.

[10] O. D’Huys, R. Vicente, J. Danckaert, and I. Fischer. Synchronization and symmetry
breaking of delay-coupled oscillators: on the role of phase and amplitude instabilities.
Proc. of SPIE, 7720, 2010.

[11] P. Buono and J. Collera. Symmetry-breaking bifurcations in rings of delay-coupled
semiconductor lasers. SIAM Journal on Applied Dynamical Systems, 14:1868–1898,
2015.

[12] J. Collera. Symmetry-breaking bifurcations in two mutually delay-coupled lasers. In-
ternational Journal of Philippine Science and Technology, 8:17–21, 2015.

[13] S. Yanchuk and J. Sieber. Relative equilibria and relative periodic solutions in systems
with time-delay and s1 symmetry. arXiv: Mathematical Physics, 2013.

[14] H. Erzgraber, B. Krauskopf, and D. Lenstra. Compound laser modes of mutually
delay-coupled lasers. SIAM Journal on Applied Dynamical Systems, 5:30–65, 2006.

[15] K. Engelborghs, T. Luzyanina, and D. Roose. Numerical bifurcation analysis of dela
differential equations using dde-biftool. ACM Trans. Math. Softw., 28(1):1–21, 2002.

[16] J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey, and D. Roose. DDE-BIFTOOL
v.3.1.1 Manual - Bifurcation analysis of delay differential equations, 2017.



Classifying Relative Equilibria and Relative... 63

[17] A. Domogo and J. Collera. Classification of codimension-one bifurcations in a tetrad
of lasers with feed forward coupling. AIP Conference Proceedings, 1787, 2016.

[18] M. Golubitsky, I. Stewart, and D. Schaeffer. Singularities and Groups in Bifurcation
Theory, volume II. Springer-Verlag, 1988.

[19] P. Chossat and R. Lauterbach. Methods in Equivariant Bifurcations and Dynamical
Systems. World Scientific Publishing Co. Pte. Ltd., 2000.



64 Domogo, A. A. and Collera, J. A.

This page is intentionally left blank


