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Abstract

A pair of nonempty, closed, and convex subsets pC,Dq of a real Hilbert space H is
said to have the inverse best approximation property (IBAP) if for every pp, qq P CˆD,
there exists x P H whose orthogonal projections onto C and D are p and q, respectively.
In this paper, we provide several consequences of the IBAP for two nonempty closed
convex subsets of H. Denote by pC the closed linear subspace parallel to the affine hull
of C. We show that at least in the important cases where H is finite-dimensional or
C and D are closed affine subspaces of H, pC,Dq has the IBAP if and only if p pC, pDq

has the IBAP. We also explore the existence and behavior of approximate solutions to
the same system of equations with prescribed orthogonal projections. Results obtained
were applied to a general recovery problem.

Keywords: convex sets, convex cones, affine subspaces, orthogonal projections, IBAP
2020 MSC: 41A27, 41A46, 41A50, 47J05, 47J06

1 Introduction and Notations

Throughout, H is a real Hilbert space with inner product x¨, ¨y and associated norm } ¨ }.
A pair of nonempty, closed, and convex subsets pC,Dq of H is said to have the inverse
best approximation property (IBAP) if for every pp, qq P C ˆ D, we can find x P H whose
orthogonal projections onto C and D are p and q, respectively. This property already
appeared in [5, Part One, Chapter 3] as a tool to solve problems in harmonic analysis such
as finding a function with prescribed values on subsets of the time and frequency domains
[3, Proposition 4.10]. In 2010, Combettes and Reyes deeply investigated the IBAP for
closed linear subspaces by providing various characterizations [3, Theorem 2.8] and several
applications [3, Section 4]. In 2021, the authors in [4] proposed a block-iterative algorithm
which solves a more general framework of a system of equations with convex constraints
and prescribed proximal points.
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For any pair of subsets X,Y of H and for any scalars α, β P R, we define

αX ` βY “ tαx ` βy | x P X and y P Y u and X ´ Y “ X ` p´1qY.

Let E be a subset of H. We say that E is an affine subspace of H if αE ` p1 ´ αqE Ď E
for every α P R. The smallest affine subspace of H that contains E is denoted by aff E. If
E is affine, then E ´ E is linear and is called the linear subspace of H that is parallel to E.
Moreover, if E is affine, then p@e P Eq E ´ e “ E ´ E.

Let K be a subset of H. We say that K is a cone of H if αK Ď K for all α ą 0. The
smallest cone of H that contains K is denoted by coneK. If K is both a cone and a convex
set, it is called a convex cone. The relative interior of K is riK “ tx P K | pDε ą 0q Bpx, εqX

aff C Ď Cu, where Bpx, εq “ ty P H | }x ´ y} ă εu. It is clear that intK Ď riK Ď K. The
polar cone of K is the set Ka “ tx P H | sup xK,xy ď 0u. If K is linear, Ka “ KK.

Let C be a nonempty convex subset of H. If x P C, we define the tangent and normal
cones of C at x by TCx “ cone pC ´ xq and NCx “ pC ´ xqa, respectively. If x R C, we
define TCx “ ∅ and NCx “ ∅. The two convex cones satisfy Ta

Cx “ NCx and Na
Cx “ TCx

[1, Proposition 6.44(i)]. Suppose further that C is closed. Then for each x P H, we denote
by PCx the unique point in C that is closest to x. If p P C, then p ` NCp is the set of all
vectors in H whose projection onto C is p [1, Proposition 6.47], i.e.,

p@x P Hq p “ PCx ô x ´ p P NCp. (1)

We refer the reader to [1, 2, 8, 10] for a more detailed treatment of these important
notions in convex analysis. In this paper, we wish to study the inverse best approximation
property of a family of nonempty, closed, and convex subsets of H. Throughout, we let I
be a nonempty finite index set.

Problem 1.1. Let pCiqiPI be a finite family of nonempty, closed, and convex subsets of H.

Given ppiqiPI P
Ś

iPI Ci, we wish to find conditions for the existence of a vector x P H such

that

p@i P Iq PCix “ pi. (2)

Let us denote the set of solutions to (2) by

S
`

ppiqiPI
˘

“
č

iPI
tx P H | PCix “ piu.

The problem is now equivalent to determining when S
`

ppiqiPI
˘

is nonempty. In 2010,
Combettes and Reyes [3] enumerated several characterizations of when a finite family of
nonempty closed linear subspaces pUiqiPI satisfies the IBAP. In particular, for a pair of lin-
ear subspaces pU, V q, the authors showed that (2) has a solution if and only if U X V “ t0u

and U ` V is closed. Their results were then applied to harmonic analysis, signal recovery,
and consistency of linear systems, among others [3, Section 4]. They also discussed the
characterization of the existence of approximate solutions to (2). In [7], the authors inves-
tigated the properties of approximate solutions to a special case of (2) and applied them to
the behavior of bandlimited approximations to nonsmooth time-limited signals.

The following proposition characterizes S
`

ppiqiPI
˘

. Here, pCiqiPI is a finite family of
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nonempty, closed, and convex subsets of H.

Proposition 1.2. Let ppiqiPI P
Ś

iPIpCiq. Then S
`

ppiqiPI
˘

“
Ş

iPIppi ` NCi
piq.

Proof. In view of (1), we obtain

p@i P Iq PCix “ pi ô p@i P Iq x P pi ` NCipi ô x P
č

iPI
ppi ` NCipiq.

Remark 1.3. The normal cones of special convex sets are known. Let E be a nonempty

closed convex subset of H and let x P E. If E is linear, then NEx “ EK. If E is affine,

NEx “ pE ´ Eq
K
. Finally, if E is a convex cone, then NEx “ Ea X txuK. Their proofs can

be found in [1, Section 6.4].

2 Consequences of the IBAP

In this section, we will see that the IBAP is more practical to study for affine subspaces
or when H is finite-dimensional. For this section, let us restrict ourselves to the case when
I has only two indices.

In [3, Corollary 2.12(i)ô(iii)], it is shown that if pC,Dq is a pair of closed linear subspaces
of H, then pC,Dq satisfies the IBAP if and only if PCpDKq “ C. Let pC,Dq be a pair of
nonempty, closed, and convex subsets of H. We consider the following condition:

p@d P Dq PC

`

P´1
D ptduq

˘

“ C. (3)

The condition in (3) is equivalent to PCpDKq “ C whenever C and D are linear. This is
easily seen from the fact that the linearity of C implies the linearity of PC [1, Corollary
3.24] and the fact that if D is linear and d P D, then (1) implies that P´1

D ptduq “ d ` DK.

Proposition 2.1. Let C and D be nonempty, closed, and convex subsets of H. Then pC,Dq

satisfies the IBAP if and only if Condition (3) is satisfied.

Proof. Assume that pC,Dq satisfies the IBAP and let d P D. The inclusion PC

`

P´1
D ptduq

˘

Ď

C is clear. Now let c P C. Then there exists x P H such that PCx “ c and PDx “ d.
Therefore, x P P´1

D ptduq and so c “ PCx P PC

`

P´1
D ptduq

˘

. This proves the necessity part.

Now assume Condition (3) and let pc, dq P C ˆ D. Then there exists x P P´1
D pdq such that

c “ PCx. Since x P P´1
D d ô PDx “ d, we see that the pair pC,Dq satisfies the IBAP.

Proposition 2.1 tells us that a pair pC,Dq of nonempty, closed, and convex subsets of
H can only satisfy the IBAP if all points of C are projections of points in the pre-image
of tdu with respect to PD. If C and D are nonlinear, this is a heavy constraint, which has
been pointed out in [3, Remark 1.2]. In there, they investigated a special case of Problem
1.1, where they assumed that each Ci is a closed linear subspace of H. They remarked that
the IBAP would be restrictive on general convex sets because the existence of elements that
are not support points will cause the IBAP to fail or force the system to be trivial (see
Proposition 2.2 below).
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Let C be a nonempty, closed, and convex subset of H. Let us recall that the collection
sptsC of support points of C is a dense subset of bdryC “ CzintC and satisfies the identity
sptsC “ PCpHzCq [1, Theorem 7.4]. In other words,

c P CzsptsC ñ
␣

p@x P Hq PCx “ c ô x “ c
(

. (4)

The next proposition shows that if pC,Dq has the IBAP and C contains a point that is not
a support point of C, then D is necessarily a singleton and the system pPCx,PDxq “ pc, dq

becomes trivial.

Proposition 2.2. Let C and D be nonempty, closed, and convex subsets of H, and let

c P C. Assume that pC,Dq satisfies the IBAP. If c R sptsC, then D “ tPDcu.

Proof. Let d P D. Then there exists x P H such that PCx “ c and PDx “ d. Since
c R sptsC, we obtain from (4) that x “ c.

In view of Proposition 2.2, it is necessary to determine conditions so that C coincides
with sptsC. It is clear that interior points of C are not support points of C. On the other
hand, bdryC may contain points which are not support points of C (see [1, Example 7.7]).
The next proposition is an immediate consequence of [1, Corollary 7.6].

Proposition 2.3. [1, Corollary 7.6] Let C be a nonempty, closed, and convex subset of

H with intC “ ∅. If C is an affine subspace of H or if H is finite-dimensional, then

C “ sptsC.

The IBAP for nonempty, closed, and convex sets C and D finds more practicability
when C and D have empty interior and either C and D are affine (in particular, linear)
or H is finite-dimensional. In both cases, Proposition 2.3 guarantees that CzsptsC “ ∅
which means that the scenario in Proposition 2.2 does not happen. We also emphasize
that because Proposition 2.3 is not an if-and-only-if statement, it may still happen that
C “ sptsC even if the conditions of the proposition are not satisfied.

The next proposition presents natural analogs — in the setting of closed convex cones
— of some statements in [3, Corollary 2.12], which states in part that if pU, V q is a pair of
linear subspaces of H, then

pU, V q satisfies the IBAP ô p@u P Uq Spu, 0q ‰ ∅ ô PU pV Kq “ U ô H “ UK ` V K. (5)

We recall that if K is a nonempty closed convex cone, then Moreau’s decomposition
formula [1, Theorem 6.30] provides

p@x P Hq x “ PKx ` PKax. (6)

Proposition 2.4. Let K and M be nonempty closed convex cones of H. Consider the

following statements:

(i) pK,Mq satisfies the IBAP.
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(ii) For any p P K, there exists x P H such that PKx “ p and PMx “ 0.

(iii) PK pMaq “ K.

(iv) H “ Ka ` Ma ´ PKa pMaq.

Then piq ñ piiq ô piiiq ñ pivq.

Proof. The implication piq ñ piiq is clear.
piiq ñ piiiq: The forward inclusion is clear. Let p P K. By (ii), there exists x P H such that
PKx “ p and PMx “ 0. It then follows from (1) and Remark 1.3 that x P NM p0q “ Ma.
Therefore, p P PKpMaq.
piiiq ñ piiq: Let p P K. By (iii), there exists m P Ma such that p “ PKm. Meanwhile, (6)
implies m “ PMm ` PMam. On the other hand, m “ PMam since m P Ma. Therefore,
PMm “ 0.
piiiq ñ pivq: Let x P H. Then (6) gives x “ PKax ` PKx. By (iii), there exists y P Ma

such that PKx “ PKy. But (6) also implies that PKy “ y ´ PKay. Therefore, x “

PKax ` y ´ PKay and (iv) follows.

We end this section with examples showing that the reverse implications piiq ñ piq and
pivq ñ piiiq in Proposition 2.4 are not always true if K and M are nonlinear convex cones.
In this respect, the statements in (5) do not generalize naturally to convex cones.

Example 2.5. Take H “ R2 and consider the closed convex cones K “ r0,`8q2 and

M1 “ p´8, 0s ˆ t0u. Then for any p P K, PKp “ p and PM1
p “ p0, 0q. Now, suppose

that pK,M1q satisfies the IBAP. Then there exists x P H such that PKx “ p1, 1q and

PM1
x “ p´1, 0q. But p1, 1q is not a support point of K. Therefore, (4) implies x “ p1, 1q

and consequently, PM1
p1, 1q “ p´1, 0q, which is absurd. Therefore, pK,M1q has no IBAP

and therefore, (ii) ñ (i) is not always true.

Now, consider the convex cone M2 “ r0,`8q ˆ t0u. Then Ma
2 “ p´8, 0s ˆ R. Since

Ka “ p´8, 0s2, it follows that

Ka ` Ma
2 ´ PKa pMa

2 q “ p´8, 0s2 ` p´8, 0s ˆ R ´ p´8, 0s2 “ R2 “ H,

but PKpMa
2 q “ t0u ˆ r0,`8q ‰ K. This means that (iv) ñ (iii) is not always true.

Remark 2.6. A practically useful equivalence found in [3, Corollary 2.12(i)ô(vi)] states

that if pU, V q is a pair of closed linear subspaces of H, then

pU, V q satisfies the IBAP ô U X V “ t0u and U ` V is closed. (7)

In the setting of closed convex cones, this equivalence can fail. Indeed, with the same K

and M1 as defined in Example 2.5, we have K X M1 “ t0u and K ` M1 “ R ˆ r0,`8q is

closed. However, we have already seen that the pair pK,M1q does not satisfy the IBAP.
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3 pC,Dq has the IBAP if and only if p pC, pDq has the IBAP

For a nonempty subset C of H, we define

pC “ aff C ´ aff C,

i.e., pC is the closure of the linear subspace that is parallel to the affine hull of C. In this
section, we will show that if pC,Dq is a pair of nonempty, closed, and convex subsets of
a finite-dimensional Hilbert space H or if pC,Dq is a pair of nonempty, closed, and affine

subspaces of H, then pC,Dq has the IBAP if and only if p pC, pDq has the IBAP.

The following lemma presents some properties of the linear subspace pC. In general, pC
need not equal span C.

Lemma 3.1. Let C be a nonempty convex subset of H. Then the following holds:

(i) spanpC ´ Cq “ conepC ´ Cq “ pC.

(ii) C ´ C Ď pC Ď spanC “ coneC ´ coneC.

(iii) If C is a nonempty convex cone, then pC “ C ´ C “ spanC.

Proof. (i): Let D “ C ´ C. It can be easily checked that D is a nonempty convex set
which satisfies D “ ´D. Applying [1, Proposition 6.4(ii)], we get

span pC ´ Cq “ cone pC ´ Cq, (8)

and so the first equality follows. Now let x P C. We claim that aff C “ x ` conepC ´ Cq.
Let y P aff C. Then there exist scalars tλiu1ďiďm with

řm
i“1 λi “ 1 and vectors

tciu1ďiďm Ď C such that y “
řm

i“1 λici. Observe that

y ´ x “
řm

i“1 λici ´ x “
řm

i“1 λici ´
řm

i“1 λix “
řm

i“1 λipci ´ xq P spanpC ´ Cq.

In view of (8), y ´ x P conepC ´ Cq and so, aff C Ď x ` conepC ´ Cq. To show the reverse
inclusion, let z P x ` conepC ´ Cq. Then there exist λ ą 0 and c1, c2 P C such that

z “ x ` λpc1 ´ c2q “ 1 ¨ x ` λc1 ` p´λqc2.

Hence, z P aff C. This proves the claim.
Now, this claim and (8) imply that cone pC ´ Cq is the linear subspace of H that is

parallel to aff C. Therefore, aff C ´ aff C “ cone pC ´ Cq and the second equality follows.
(ii): The first inclusion follows from the fact that C Ď aff C. For the second inclusion, since

aff C Ď spanC, we get pC Ď spanC ´ spanC “ spanC. The last equality follows from [1,
Proposition 6.4(i)].
(iii): Suppose C is a cone. Then coneC “ C. Therefore, by (ii),

C ´ C Ď pC Ď spanC “ coneC ´ coneC “ C ´ C.

The next example shows that strict inclusions in Lemma 3.1(ii) may occur.
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Example 3.2. Consider the convex subset C “ t1u ˆ r0, 1s of R2. Then C ´ C “ t0u ˆ

r´1, 1s, pC “ t0u ˆ R, and spanC “ R2. We see that C ´ C Ă pC Ă spanC.

The next lemma is useful to show the sufficiency part of our main result. If C is a
nonempty subset of H, the orthogonal complement of pC will be denoted by pCK.

Lemma 3.3. Let C be a nonempty convex subset of H, and let p P C. Then

pCK Ď NCp.

Proof. By Lemma 3.1(i), conepC ´ pq Ď conepC ´ Cq “ pC. Thus, TCp Ď pC. Finally, in
view of [1, Propositions 6.23 and 6.24(i)],

pCK “
`

pC
˘a

Ď pTCpq
a

“ NCp.

We are now ready to present our main results for this section. In the next proposition,
we show that if C and D are nonempty closed convex subsets of H, then pC,Dq satisfies the

IBAP whenever p pC, pDq satisfies the IBAP.

Proposition 3.4. Let C and D be nonempty, closed, and convex subsets of H. If p pC, pDq

has the IBAP then pC,Dq has the IBAP.

Proof. Suppose that p pC, pDq has the IBAP but pC,Dq has no IBAP. In view of Proposition
1.2, there exists pp, qq P C ˆ D such that pp ` NCpq X pq ` NDqq “ ∅. But by Lemma 3.3,

pp ` pCKq X pq ` pDKq Ď pp ` NCpq X pq ` NDqq “ ∅.

We therefore obtain pp ` pCKq X pq ` pDKq “ ∅. Since pC and pD are linear and p pC, pDq has

the IBAP, it follows from (5) that pCK ` pDK “ H. Hence there exist pC , qC P pCK and

pD, qD P pDK such that
p “ pC ` pD and q “ qC ` qD.

Take z “ qC ` pD. Then z ´ p “ qC ´ pC P pCK and z ´ q “ pD ´ qD P pDK. Consequently,
we have z P pp ` pCKq X pq ` pDKq, a contradiction.

We now turn our interest to the converse statement of Proposition 3.4. We will need the
next two lemmas.

Lemma 3.5. Let A and B be nonempty subsets of H and suppose that A Ď B. Then for

any x P A, NBx Ď NAx.

Proof. Let x P A. Then A´x Ď B ´x. Thus in view of [1, Proposition 6.24(i)], we obtain
NBx “ pB ´ xq

a
Ď pA ´ xq

a
“ NAx.

In the next lemma, we show that if a segment in a closed convex set C and a segment in
a closed convex set D are parallel, then the pair pC,Dq will not satisfy the IBAP. In Lemma
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3.6, we will use the notation:

if Λ Ď R and e P H, then Λe “ tλe | λ P Λu

and the following well-known fact: if S Ď H and a P H, then for any x P a ` S,

Na`Sx “ ppa ` Sq ´ xq
a

“ pS ´ px ´ aqq
a

“ NSpx ´ aq. (9)

Lemma 3.6. Let C and D be nonempty, closed, and convex subsets of H. Let a, b, e P H
with e ‰ 0 and suppose that α1, α2, β1, β2 P R such that α1 ă α2 and β1 ă β2. If

S “ a ` rα1, α2se Ď C and T “ b ` rβ1, β2se Ď D

then pC,Dq has no IBAP.

C

S

‚a ` α1e

‚a ` α2e

‚
u

D
T

‚
b ` β1e

‚ b ` β2e

‚
v

‚0

e

u ` teuK

v ` teuK

Figure 1: The segments S and T are parallel so a translate of the normal cone of an
element of S is parallel to that of an element of T .

Proof. In view of Proposition 1.2, it suffices to show that there exists u P C and v P D
such that

pu ` NCuq X pv ` NDvq “ ∅. (10)

Take u “ a `
α1 ` α2

2
e, which is the midpoint of S. In view of (9), we obtain

NSu “ Nrα1,α2sepu ´ aq “

$

&

%

x P H
ˇ

ˇ

ˇ

ˇ

sup
α1Pr´

α2´α1
2 ,

α2´α1
2 s

α1xe, xy ď 0

,

.

-

“ teuK.

On the other hand, if we take v “ b `
β1 ` β2

2
e P T , we similarly get

NT v “ Nrβ1,β2sepv ´ bq “ teuK.
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Since S Ď C and T Ď D, it follows from Lemma 3.5 that

pu ` NCuq X pv ` NDvq Ď pu ` NSuq X pv ` NT vq “ pu ` teuKq X pv ` teuKq.

Thus, in view of (10), it suffices to show that the affine sets u ` teuK and v ` teuK are
disjoint.

Claim 1: For p, q P H, either p ` teuK “ q ` teuK or
`

p ` teuK
˘

X
`

q ` teuK
˘

“ ∅.

Assume that
`

p ` teuK
˘

X
`

q ` teuK
˘

‰ ∅. We will show that

p ` teuK “ q ` teuK.

Let x P
`

p ` teuK
˘

X
`

q ` teuK
˘

. Then x ´ p and x ´ q are vectors in teuK. It follows that

q´p “ px´pq´px´qq P teuK. By linearity of teuK, p`teuK “ p`
`

pq´pq`teuK
˘

“ q`teuK.
This proves Claim 1.

If u` teuK ‰ v ` teuK, then by Claim 1,
`

u ` teuK
˘

X
`

v ` teuK
˘

“ ∅, and we are done.
On the other hand, if u ` teuK “ v ` teuK, we consider the midpoint w of pa ` α1eq and u,
i.e.,

w “
a ` α1e ` u

2
“ a `

3α1 ` α2

4
e P S.

It is clear that w ‰ u because otherwise, we will obtain α1 “ α2, a contradiction. Moreover,
we can use the same argument as above to show that NSw “ teuK.

Claim 2: Suppose that u ` teuK “ v ` teuK. Then pw ` teuKq X pv ` teuKq “ ∅.
We proceed by contradiction. Assume that pw ` teuKq X pv ` teuKq ‰ ∅. Then by Claim 1,
u ` teuK “ v ` teuK “ w ` teuK. Therefore, w ´ u P teuK. It then follows that

0 “ xw ´ u, ey “

Bˆ

a `
3α1 ` α2

4
e

˙

´

ˆ

a `
α1 ` α2

2
e

˙

, e

F

“
α1 ´ α2

4
}e}2

This implies α1 “ α2, a contradiction. This proves Claim 2.

In any case, there exists z P S (either z “ u or z “ wq such that

pz ` NSzq X pv ` NT vq “
`

z ` teuK
˘

X
`

v ` teuK
˘

“ ∅.

Since S Ď C and T Ď D, we have z P C and v P D. Moreover, in view of Lemma 3.5, we
obtain

pz ` NCzq X pv ` NDvq Ď pz ` NSzq X pv ` NT vq “ ∅.

The desired conclusion then follows from Proposition 1.2.

The next proposition shows that for a pair pC,Dq of nonempty closed convex subsets of

H to satisfy the IBAP, it is necessary that pC X pD “ t0u. This extends [3, Proposition 2.2],
which implies the same result for two closed linear subspaces of H.

Proposition 3.7. Let C and D be nonempty closed convex subsets of H. If pC X pD ‰ t0u

then pC,Dq has no IBAP.
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Proof. Let e P pC X pD with e ‰ 0. Since pC X pD is linear, we may assume without loss
of generality that }e} “ 1. Note that if C or D is a singleton, then pC or pD equals t0u

which implies pC X pD “ t0u, a contradiction. Therefore, C and D each contains at least two
elements. Since C is convex and not a singleton, riC contains at least an open line segment.
Fix u P riC. Then there exists ε ą 0 such that

Bpu, 2εq X aff C Ď C. (11)

Now, since pC is linear, r´ε, εse Ď pC. But

pC “ aff C ´ aff C “ aff C ´ u “ aff C ´ u.

Therefore, u`r´ε, εse Ď aff C. Now, let us show that S “ u`r´ε, εs e Ď C. Fix λ P r´ε, εs.
Since u ` λe P aff C, we can find a sequence tyλnu Ď aff C such that

yλn Ñ u ` λe. (12)

Therefore, we can find N P N such that

}u ´ yλn} ď }λe} ` ε ď ε ` ε “ 2ε,

whenever n ě N. Therefore, it follows that tyλnu
`8
n“N Ď Bpu, 2εq X aff C. In view of (11),

tyλnu
`8
n“N Ď C. Since C is closed, it follows from (12) that u ` λe P C. This proves S Ď C.
Similarly, we can find v P riD and δ ą 0 such that T “ v ` r´δ, δs e Ď D. By Lemma

3.6, pC,Dq has no IBAP.

y

x

K

M1

Figure 2: The convex cones K “ p0,`8s2 and M1 “ p´8, 0s ˆ t0u.

Example 3.8. Using the setting in Example 2.5, let us illustrate that the pair of convex

subsets pK,M1q, as shown in Figure 2, has no IBAP in view of Proposition 3.7. We see in

Figure 3 that

pK X xM1 “ R ˆ t0u ‰ tp0, 0qu.

Therefore, we can conclude from Proposition 3.7 that pK,M1q has no IBAP.
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y

x

pK

xM1

Figure 3: The linear subspaces pK “ R2 and xM1 “ R ˆ t0u.

By taking the contrapositive of the previous proposition and by making use of the char-
acterization (7) of the IBAP for linear subspaces, we immediately obtain the next result.

Proposition 3.9. Let C and D be nonempty closed convex subsets of H such that pC ` pD

is closed. If pC,Dq has the IBAP, then p pC, pDq has the IBAP.

The following is our main theorem.

Theorem 3.10. Let C and D be nonempty closed convex subsets of H. Consider the

following statements:

(i) p pC, pDq has the IBAP.

(ii) pC,Dq has the IBAP.

Then piq ñ piiq. Moreover, if we assume that pC ` pD is closed, then piiq ñ piq.

Proof. Combine Proposition 3.4 and Proposition 3.9.

The following example illustrates Theorem 3.10.

Example 3.11. Set H “ R3. Consider the two closed convex sets

C “ t0u ˆ t0u ˆ r1,`8q and D “ tpx, y, 0q P H | px ´ 1q2 ` py ´ 2q2 ď 1, y ď 2u.

Observe that pC equals the z´axis while pD coincides with the xy´plane. Clearly, pCX pD “ t0u

and R3 “ pC ` pD. By the characterization (7) of the IBAP for linear subspaces, p pC, pDq has

the IBAP. Invoking Theorem 3.10, pC,Dq has the IBAP.

The sum of two closed subspaces of an infinite-dimensional Hilbert space need not be
closed (see [1, Example 3.41]). Classical results which investigate conditions for closedness
of a direct sum can be found in [6, Chapter 4, Section 4] and [9, Chapter 7, Section 4].
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D

C

p‚

q‚

x “ p ` q
‚

x

y

z

Figure 4: For all p P C and q P D, the solution to the system pPCx,PDxq “ pp, qq is
x “ p ` q.

In Theorem 3.10, we still don’t know whether the closedness of pC ` pD is necessary
to prove (ii)ñ(i). However, in view of Propositions 2.2 and 2.3, we are contented that
in the important cases where H is finite-dimensional or when C and D are closed affine
subspaces, we are able to drop the condition that pC ` pD must be closed (see Corollary 3.12
and Proposition 3.14).

Corollary 3.12. Let C and D be two nonempty, closed, and convex subsets of H. Suppose

that either pC or pD is finite-dimensional. Then pC,Dq has the IBAP if and only if p pC, pDq

has the IBAP.

Proof. Since pC or pD is finite-dimensional, it follows from [9, Corollary 7-4.9] that pC ` pD
is closed. The desired conclusion now follows from Theorem 3.10.

The next proposition will use the following well-known fact about projections onto trans-
lates of closed convex sets.

Lemma 3.13. [1, Proposition 3.19] Let C be a nonempty, closed, and convex subset of H
and let x, y P H. Then Py`Cx “ y ` PCpx ´ yq.

Proposition 3.14. Let X and Y be nonempty, closed, and affine subspaces of H. Then

pX,Y q has the IBAP if and only if p pX, pY q has the IBAP.

Proof. The sufficiency part is true by Theorem 3.4. Now, suppose that pX,Y q has the

IBAP. Let pp, qq P pX ˆ pY . We write X “ a` pX and Y “ b` pY for some a P X and for some

b P Y . Since pX and pY are linear, then a ` pp ` P
xX
bq P X and b ` pq ` P

pY aq P Y . Because
pX,Y q has the IBAP, there exists z P H such that

PXz “ a ` p ` P
xX
b and PY z “ b ` q ` P

pY a. (13)
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Meanwhile, the linearity of P
xX

and P
pY implies

P
xX

pz ´ a ´ bq “ P
xX

pz ´ aq ´ P
xX
b and P

pY pz ´ a ´ bq “ P
pY pz ´ bq ´ P

pY a. (14)

Lemma 3.13 implies that

P
xX

pz ´ aq “ P´a`Xpz ´ aq “ ´a ` PXppz ´ aq ´ p´aqq “ ´a ` PXz. (15)

Therefore, in view of (14), (15), and (13), we obtain

P
xX

pz ´ a ´ bq “ ´a ` PXz ´ P
xX
b “ p.

Similarly, P
pY pz ´ a´ bq “ ´b`PY z ´P

pY a “ q. This shows that p pX, pY q has the IBAP.

4 Approximate Solutions to pPCx,PDxq “ pp, qq

It may happen that the system (2) in Problem 1.1 does not admit a solution but admits
approximate solutions. In this section, we investigate the approximate solution to the system
and provide a characterization for the existence of approximate solutions.

Definition 4.1. Let pCiqiPI be a finite family of nonempty closed convex subsets of H and

let ppiqiPI P
Ś

iPI Ci. A sequence txnu is said to be a sequence of approximate solutions to

p@i P Iq PCi
x “ pi if

ř

iPI∥PCi
xn ´ pi∥ Ñ 0 as n Ñ `8.

In the setting of closed linear subspaces of H in [3], the authors showed that approximate
solutions always exist if and only if the linear subspaces are linearly independent, that is,

ˆ

@puiqiPI P
ą

iPI
Ui

˙

ÿ

iPI
ui “ 0 ñ p@i P Iq ui “ 0.

Note that pU1, U2q are linearly independent if and only if U1 X U2 “ ∅.

Proposition 4.2. [3, Proposition 2.5] Let pUiqiPI be a finite family of nonempty closed

linear subspaces of H. Then the following are equivalent.

(i) pUiqiPI are linearly independent.

(ii)
`

@puiqiPI P
Ś

iPI Ui

˘

p@ε ą 0qpDx P Hq
ř

iPI }PUi
x ´ ui} ă ε.

The next proposition shows that this can be extended to affine subspaces of H.

Proposition 4.3. Let pXiqiPI be a finite family of nonempty, closed, and affine subspaces

of H. Then the following are equivalent:
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(i)
`

xXi

˘

iPI are linearly independent.

(ii) Given ppiqiPI P
Ś

iPI Xi and ε ą 0, there exists x P H such that

ÿ

iPI
}PXi

x ´ pi} ă ε.

Proof. For each i P I, we may write Xi “ ai ` xXi, for some ai P Xi.
(i)ñ(ii): Let ppiqiPI P

Ś

iPI Xi and let ε ą 0. For each i P I, the linearity of xXi yields

ppi ´ aiq ´ P
xXi

ˆ

ÿ

j‰i

aj

˙

P xXi.

In view of Proposition 4.2, (i) implies that we can find x P H such that

ÿ

iPI

›

›

›

›

P
xXi
x ´

«

ppi ´ aiq ´ P
xXi

ˆ

ÿ

j‰i

aj

˙

ff

›

›

›

›

ă ε. (16)

Set z “ x `
ř

jPI aj . For each i P I, Lemma 3.13 and the linearlity of P
xXi

imply

PXiz ´ pi “ P
xXi

ˆ

x `
ÿ

j‰i

aj

˙

´ ppi ´ aiq “ P
xXi
x ` P

xXi

ˆ

ÿ

j‰i

aj

˙

´ ppi ´ aiq.

In turn, (16) gives
ř

iPI }PXi
z ´ pi} ă ε. Thus, (ii) holds.

(ii)ñ(i): Our strategy is to use Proposition 4.2 with p@i P Iq Ui “ xXi. Let pziqiPI P
Ś

iPI
xXi

and let ε ą 0. For each i P I, zi `P
xXi

´

ř

j‰i aj

¯

P xXi, and so, ai `zi `P
xXi

´

ř

j‰i aj

¯

P Xi.

By (ii), there exists y P H such that

ÿ

iPI

›

›

›

›

PXiy ´

«

ai ` zi ` P
xXi

˜

ÿ

j‰i

aj

¸ff

›

›

›

›

ă ε.

In view of Lemma 3.13 and the linearity of each P
xXi
, this is equivalent to

ÿ

iPI

›

›

›

›

P
xXi

˜

y ´
ÿ

jPI
aj

¸

´ zi

›

›

›

›

ă ε.

Therefore, Proposition 4.2 implies that
`

xXi

˘

iPI are linearly independent.

Now we turn our attention to the behavior of approximate solutions in relation to the
solvability of the system in (2). We first recall the notion of nonexpansive operators.

Definition 4.4. An operator T : H Ñ H is said to be nonexpansive if }Tx´Ty} ď }x´ y}

for every x, y P H.
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It is well-known that if C is nonempty, closed, and convex set, then PC and Id ´ PC are
nonexpansive. Here, Id is the identity map on H.

The first result shows that if a sequence of approximate solutions converges, then its
limit must be a solution to the system.

Proposition 4.5. Let pCiqiPI be a finite family of nonempty, closed, and convex subsets of

H, let ppiqiPI P
Ś

iPI Ci and let z P H. Suppose that there exists a sequence txnu in H such

that
ř

iPI }PCi
xn ´ pi} Ñ 0 and that xn Ñ z. Then p@i P Iq PCi

z “ pi.

Proof. For each i P I and for each n P N, the nonexpansiveness of PCi implies

}PCi
z ´ pi} ď }PCi

z ´ PCi
xn} ` }PCi

xn ´ pi} ď }z ´ xn} `
ÿ

jPI
}PCj

xn ´ pj}.

Therefore, the assumptions yield the desired conclusion.

Remark 4.6. If the system in (2) has both a solution and a sequence of approximate

solutions, then the sequence of approximate solutions may not converge. Indeed, if x and

y are distinct solutions of the system, then a trivial example of a sequence of approximate

solutions that does not converge is tx, y, x, y . . .u.

Now suppose that the system in (2) has no solution but we can find a sequence of
approximate solutions to the system. Our next result shows that the norm of this sequence
of approximate solutions will eventually blow up. We will first need the following lemma
which is an immediate consequence of Browder’s Demiclosedness Principle [1, Theorem
4.27].

Lemma 4.7. For each i P I, let Ti : H Ñ H and suppose that pId ´ Tiq is a nonexpansive

operator. Let tyiuiPI Ď H and txnunPN Ď H. Suppose that

pEx P Hq p@i P Iq Tix “ yi but
ÿ

iPI
}Tixn ´ yi} Ñ 0.

Then }xn} Ñ `8.

Proof. We proceed by contradiction. Suppose otherwise. Then txnu has a bounded
subsequence from which we can further extract a weakly convergent subsequence txkn

u [1,
Lemma 2.45]. Let z P H be the weak limit of xkn

.
Meanwhile, for each i P I, we see that

}xkn
´ pId ´ Tiqxkn

´ yi} “ }Tixkn
´ yi} Ñ 0.

This means xkn
´ pId´Tiqxkn

Ñ yi, for each i P I. In view of the Demiclosedness Principle,
it follows that for each i P I, z ´ pId ´ Tiqz “ yi, or equivalently, Tiz “ yi. This is a
contradiction.
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Letting Ti “ PCi
, for each i P I, and noting that each Id ´ PCi

is nonexpansive, we
immediately obtain the following result.

Proposition 4.8. Let pCiqiPI be a finite family of nonempty, closed, and convex subsets of

H. Given ppiqiPI P
Ś

iPI Ci, suppose that the system p@i P Iq PCi
x “ pi admits no solution.

If there exists a sequence of approximate solutions txnu to the system, then }xn} Ñ `8.

In [7, Proposition 2.1], the authors proved a special case of Proposition 4.8, and posed
the problem of relating the rate of convergence of

ř

iPI }PCixn ´ pi} to 0 with the rate of
growth of }xn}.

5 Application to a Recovery Problem

In this section, we investigate the problem of finding an approximation x P ℓ2pNq to the
original signal z P ℓ2pNq, such that some of the components of x are nonnegative and that its
projection onto a fixed closed convex set is known. This problem is related to [4, Equation
1.1].

Problem 5.1. Set H “ ℓ2pNq. Let D be a nonempty closed convex subset of H and let

u P H. Suppose I and J form a partition of N. The problem is to find x “ txnu P H such

that

min
xPH

}x ´ z} subject to p@i P Iq xi ě 0 and PDx “ p. (17)

Consider the closed convex cone C “ ttxnu P H | p@i P Iq xi ď 0 and p@j P Jq xj “ 0u. Ob-

serve that

Ca “

#

tunu P H
ˇ

ˇ

ˇ

ˇ

sup
xiď0

ÿ

iPI

xiui ď 0

+

“
␣

tunu P H | p@i P Iq ui ě 0
(

.

Therefore, if x P H satisfies the first constraint in (17), then x P Ca. By (6), PCx “ 0.

Thus, Problem 5.1 is feasible if and only if there exists x P H such that

PCx “ 0 and PDx “ p. (18)

Propositions 1.2 and 2.4(ii)ô(iii) give sufficient conditions for the existence of solutions to

(18): either Ca Xpp`NDpq ‰ ∅ or D “ PDpCaq. Now suppose that the solution set Sp0, pq

of (18) is nonempty. From Proposition 1.2, Sp0, pq is an intersection of closed convex sets,

so it must also be a closed convex set. We therefore conclude that the solution to Problem

5.1 is x “ PSp0,pqz.

To find x P H numerically, we may consider the following instantiation of the Dykstra’s

algorithm [1, Theorem 30.7] applied to Ca and p ` NDp:
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Data: Set C1 :“ Ca and C2 :“ p ` NDp

Result: Construct a sequence pxnqnPN such that xn Ñ PSp0,pqz

initialize x0 :“ z;

set q´1 “ q0 “ 0;

for n “ 1, 2, ... do

set i “ n ´ 2tpn ´ 1q{2u;

xn “ PCipxn´1 ` qn´2q;

qn “ xn´1 ´ xn ` qn´2;

end
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