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Abstract

Let Ek ∈ Mp+q(R) be the matrix where the (k, k)-entry is 1, and all other en-
tries are zero. Let S = Ip+q − 2Ep+1. We consider an involution of O(p, q) defined
by inner-conjugation or similarity by S. We define Lie subgroups K,A,N of O(p, q)
similar to the Iwasawa decomposition. We state a sufficient condition that if satisfied
by any G ∈ O(p, q) then G ∈ KAN . Also, we consider inner-conjugation by other
Householder-type matrices in O(p, q).
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1 Introduction

We present an Iwasawa-like decomposition forO(p, q), p, q ≥ 2. This article is an extension of
an Iwasawa-like decomposition for O(1, n) [6]. The proofs for O(1, n) and O(p, q) are almost
identical surprisingly. Prior to these Iwasawa-like decompositions, we studied polar-like
decompositions for O(p, q), and several information have been laid as background material
for this paper, and we refer the reader to [7].

Let Jp,q = Ip ⊕ (−Iq) ∈ Mp+q(R) be a diagonal square real matrix where p, q ≥ 2. The
first p diagonal entries of Jp,q are ones, and the next q diagonal entries are minus ones. Let
(x, y)p,q = xTJp,qy define an indefinite scalar product on Rp+q where x, y ∈ Rp+q. When
G ∈ Mp+q(R), we conventionally say G is orthogonal with respect to (·, ·)p,q if (Gx,Gy)p,q =
(x, y)p,q for all x, y ∈ Rp+q. The indefinite orthogonal group O(p, q) consists of all matrices
G that are orthogonal with respect to (·, ·)p,q. We easily find

O(p, q) = {G ∈ GLp+q(R) : GTJp,qG = Jp,q}

where GT denotes the transpose of G. The Lie algebra of O(p, q) is given by

so(p, q) = {X ∈ Mp+q(R) : XTJp,q + Jp,qX = 0}.

Let Ek ∈ Mp+q(R) be the matrix where the (k, k)-entry is 1, and the other entries are zero.
Let

S = Ip+q − 2Ep+1. (1)
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Clearly, S ∈ Mp+q(R), S−1 = S, and it is known that S is a Jp,q-Householder matrix [5] [7].
Consider an involution ρ of O(p, q) defined by inner-conjugation or similarity by S where
ρ(A) = SAS−1, A ∈ O(p, q). We omit in the notation that ρ depends on S for brevity. The
differential dρ of ρ is a Lie algebra involution satisfying dρ(X) = SXS−1, X ∈ so(p, q).

Consider a scalar product on so(p, q), namely,

(X,Y )S = −Tr(XSY S−1) (2)

X,Y ∈ so(p, q). The bilinear form (2) is indefinite, in general, but similar to the positive-
definite bilinear form induced by the Killing form and a Cartan involution in [3, p. 185].
Cartan involutions are ubiquitous in decompositions of simple real Lie algebras and their
associated Lie groups. In this paper, even though dρ is not a Cartan involution in general,
we pursue Iwasawa-like decompositions induced by dρ on so(p, q) and O(p, q). There is a
wide literature on Iwasawa decompositions of (including infinite-dimensional) Lie groups
as early as 1949, and some can be found for instance in [1] [3], [4], [8] and in their listed
references.

We easily verify (X,Y )S = (Y,X)S and (dρ(X), dρ(Y ))S = (X,Y )S . We know O(p, q)
acts naturally as a group of linear transformations on so(p, q) in the following way. Let Ad :
O(p, q) → GL(so(p, q)) be the adjoint representation, i.e., for each G ∈ O(p, q), Ad(G) is a
linear transformation of so(p, q) satisfying Ad(G)X = GXG−1 ∈ so(p, q), X ∈ so(p, q). We
say G is S-orthogonal if (Ad(G)X,Ad(G)Y )S = (X,Y )S for all X,Y ∈ so(p, q). Likewise,
G is S-symmetric if (Ad(G)X,Y )S = (X,Ad(G)Y )S for all X,Y ∈ so(p, q). Let G[S] =
ρ(G−1). We state G[S] is the S-adjoint of G since

(Ad(G)X,Y )S = (X,Ad(G[S])Y )S , ∀X,Y ∈ so(p, q).

Definition 1. The eigenspaces of dρ, and the subgroup of fixed points of ρ are denoted and

defined by the following.

1. p = {X ∈ so(p, q) : SXS−1 = −X}

2. K = {X ∈ so(p, q) : SXS−1 = X}

3. K = {K ∈ O(p, q) : SKS−1 = K}

Clearly, p and K are S-orthogonal subspaces, i.e., (X,Y )S = 0 for all X ∈ p, Y ∈ K.
We find K ∈ K iff KK [S] = I iff K is S-orthogonal. Also, if X ∈ p, we easily verify eX is
S-symmetric.

In Section 2, we let hp be a maximal subspace of p such that hp is an abelian Lie
subalgebra of so(p, q). We find hp is 1-dimensional and spanned by some nonzero V1 ∈ p.
Let n be the 1-eigenspace of ad(V1), i.e. , [V1, Y ] = Y , ∀Y ∈ n. We show n is an abelian
Lie subalgebra. In Section 3, we let A and N be the connected abelian Lie subgroups of
O(p, q) with Lie algebras hp and n, respectively. Since hp and n are abelian, and we find the
restriction of the exponential mapping to hp and n are injective, we obtain A = exp hp and
N = exp n.

If G ∈ KAN , we say G has an S-Iwasawa decomposition. We state a sufficient condition
that if satisfied by G, namely, that the quantity in (6) be nonzero, then G ∈ KAN . Details
and proofs of lemmas and various claims in Section 2 and Section 3 are given in Appendix
A and Appendix B, respectively.

The following lemma describes the matrices in the Lie algebra so(p, q) [7].
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Lemma 1. Let X ∈ Mp+q(R). Then X ∈ so(p, q) iff there exist X1 ∈ so(p), X3 ∈ so(q),

and X2 ∈ Rp×q satisfying

X =

 X1 X2

XT
2 X3

 ∈ so(p, q).

We recall the matrices in p, i.e., the (−1)-eigenspace of dρ, from [7].

Lemma 2. Let X =

 X1 X2

XT
2 X3

 ∈ so(p, q) be given by Lemma 1. Then X ∈ p iff X1 = 0,

and there exist x ∈ Rp and v ∈ Rq−1 such that

X =


0 x 0

xT 0 −vT

0 v 0

 ∈ p. (3)

Let Ai,j denote the (i, j)-entry of A ∈ O(p, q). We directly verify A ∈ K iff SAS−1 = A
iff Ai,jSj,j = Ai,jSi,i . The next lemma follows directly.

Lemma 3. Let A ∈ O(p, q). The following statements are equivalent.

(a) A ∈ K

(b) Ai,p+1 = 0 for all i ̸= p+ 1.

2 S-Iwasawa decomposition of so(p, q)

For 1 ≤ k ≤ p, let ek ∈ Rp be the standard unit vector where the kth entry is 1, and the
other entries are zero. Throughout this article, we let

V1 =

 0 e1 0
eT1 0 0
0 0 0

 ∈ p. (4)

If X ∈ so(p, q), let ad(V1)(X) = [V1, X] = V1X −XV1 denote the Lie bracket. For λ ∈ R,
denote the λ-eigenspace of ad(V1) by

so(p, q)λ = {X ∈ so(p, q) : ad(V1)(X) = λX}.

Lemma 4. The eigenvalues of ad(V1) are precisely −1, 0, 1. Moreover, we have a direct

sum of eigenspaces

so(p, q) = so(p, q)−1 ⊕ so(p, q)0 ⊕ so(p, q)1.

The proof of Lemma 4 is computational, and provided in Appendix A.

Definition 2. We define the following subspaces.
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1. hp = {tV1 : t ∈ R}

2. n = so(p, q)1

3. s = hp ⊕ n, a direct sum of vector spaces

4. m = {X ∈ K : [X,H] = 0, ∀H ∈ hp}, the centralizer of hp in K.

5. A subspace V of p is called abelian if [X,Y ] = 0, ∀X,Y ∈ V .

Corollary 5. The following are direct sums of subspaces.

1. so(p, q) = K⊕ hp ⊕ n, the S-Iwasawa decomposition of so(p, q)

2. hp is a maximal abelian subspace of p

3. so(p, q)0 = m⊕ hp

Proof Since so(p, q) = K ⊕ p is a direct sum of subspaces, Statement 1 of the corollary
follows from Lemma 4. Statement 2 is a direct consequence of [7, Lemma 2.3]. Finally,
Statement 2 implies Statement 3.

2

Moreover, we have additional properties.

Lemma 6. n is an abelian Lie algebra, and s is a solvable Lie algebra.

The proof of the above lemma is also in Appendix A.

3 S-Iwasawa decomposition of O(p, q)

Let A, N , and S be the connected Lie subgroups of O(p, q) with Lie algebras hp, n, and s,
respectively. In Appendix B, we show S = AN . Using (4) and t ∈ R, we obtain

etV1 =


cosh(t) 0 sinh(t) 0

0 Ip−1 0 0
sinh(t) 0 cosh(t) 0

0 0 0 Iq−1

 . (5)

We need another definition.

Definition 3. For t ∈ R and t ̸= 0, define the following functions that are differentiable on

R.

1. α1(t) =
et−1

t , and α1(0) = 1

2. α2(t) =
1−e−t

t , and α2(0) = 1

3. α(t) = cosh(t)−1
t2 , and α(0) = 1

2
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Let G ∈ O(p, q). Applying the S-polar decomposition to G−1 we obtain G−1 = eXK0

for some K0 ∈ K and X ∈ p, see [7, Theorem 2.16]. Let X be given by (3) where x =
(x1, . . . , xp)

T ∈ Rp, and v ∈ Rq−1. Let β = xTx− vT v, and let

ξ =
sinh(

√
β)√

β
x1 − cosh(

√
β). (6)

The condition that guarantees that G has an S-Iwasawa decomposition is that ξ ̸= 0. In
such a case, we let

1. t0 = ln(|ξ|)

2. x′ = (x2, . . . , xp)
T ∈ Rp−1

3. a = 1
ξα2(t)

sinh(
√
β)√

β
x′ ∈ Rp−1

4. b = − 1
ξα2(t)

sinh(
√
β)√

β
v ∈ Rq−1.

In Appendix B, we show

(1) Y =


0 aT 0 bT

−a 0 a 0
0 aT 0 bT

b 0 −b 0

 ∈ n = so(p, q)1

(2) Z ≡ et0V1eα2(t0)Y eX ∈ K

(3) (k−1
0 Z−1, et0V1 , eα2(t0)Y ) ∈ K ×A×N

(4) G is the product of the entries in (3), namely,

G = (k−1
0 Z−1)(et0V1)(eα2(t0)Y ) ∈ KAN .

The above factorization is called a S-Iwasawa decomposition of G.

Appendix A

Let ek ∈ Rp be the standard unit vector where the kth entry is 1, and the other entries are
zero. Following Lemma 1, let

X =

[
X1 X2

XT
2 X3

]
∈ so(p, q). (7)

Let [e1 0] ∈ Rp×q denote a matrix where the first column is e1, and the other column vectors

are zero vectors. Clearly, [e1 0]T =

[
eT1
0

]
∈ Rq×p. We recall V1 ∈ p in (4). Then we obtain

the following two identities.

1. V1X =

 [e1 0]XT
2 [e1 0]X3[

eT1
0

]
X1

[
eT1
0

]
X2


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2. XV1 =

 X2

[
eT1
0

]
X1[e1 0]

X3

[
eT1
0

]
XT

2 [e1 0]


Combining the above two identities, we obtain the following lemma.

Lemma 7. Let V1 and X ∈ so(p, q) be given by (4) and (7), respectively. Then

[V1, X] =


[e1 0]XT

2 −X2

 eT1

0

 [e1 0]X3 −X1[e1 0] eT1

0

X1 −X3

 eT1

0

  eT1

0

X2 −XT
2 [e1 0]

 (8)

Let (Xk)i,j denote the (i, j)-entry of matrix Xk. The block entries of [V1, X] in (8) satisfy
the next three identities.

1. [e1 0]XT
2 −X2

[
eT1

0

]
=


0 (X2)21 · · · (X2)p1

−(X2)21 0 · · · 0

...
...

. . .
...

−(X2)p1 0 · · · 0



2.

[
eT1

0

]
X2 −XT

2 [e1 0] =


0 (X2)12 · · · (X2)1q

−(X2)12 0 · · · 0

...
...

. . .
...

−(X2)1q 0 · · · 0



3. [e1 0]X3 −X1[e1 0] =


0 (X3)12 · · · (X3)1q

−(X1)21 0 · · · 0

..

.
...

. . .
...

−(X1)p1 0 · · · 0


Applying the above three identities, we obtain the 0-eigenspace of ad(V1).

Lemma 8. Let X ∈ so(p, q) be given by (7). Then [V1, X] = 0 iff each identity below holds.

1. X2 =


(X2)11 0 · · · 0

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗



2. X1 =


0 0 · · · 0

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗

, and X3 =


0 0 · · · 0

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗


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where ∗ denotes arbitrary and not necessarily the same entries, and X1 and X3 are real

skew-symmetric matrices. That is, [V1, X] = 0 iff

X =




0 0 · · · 0

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗




(X2)11 0 · · · 0

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗




(X2)11 0 · · · 0

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗



T 
0 0 · · · 0

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗





.

Next, the 1-eigenspace of ad(V1) is described below

Lemma 9. Let X ∈ so(p, q) be given by (7). Then [V1, X] = X iff each identity below holds.

1. X2 =


0 (X2)12 · · · (X2)1q

(X2)21 0 · · · 0

.

..
.
..

. . .
.
..

(X2)p1 0 · · · 0



2. X1 =


0 (X2)21 · · · (X2)p1

−(X2)21 0 · · · 0

...
...

. . .
...

−(X2)p1 0 · · · 0

, X3 =


0 (X2)12 · · · (X2)1q

−(X2)12 0 · · · 0

...
...

. . .
...

−(X2)1q 0 · · · 0


That is, [V1, X] = X iff

X =




0 (X2)21 · · · (X2)p1

−(X2)21 0 · · · 0

.

..
.
..

. . .
.
..

−(X2)p1 0 · · · 0




0 (X2)12 · · · (X2)1q

(X2)21 0 · · · 0

...
...

. . .
...

(X2)p1 0 · · · 0




0 (X2)12 · · · (X2)1q

(X2)21 0 · · · 0

...
...

. . .
...

(X2)p1 0 · · · 0



T 
0 (X2)12 · · · (X2)1q

−(X2)12 0 · · · 0

...
...

. . .
...

−(X2)1q 0 · · · 0





.

Likewise, the (−1)-eigenspace of ad(V1) is described below

Lemma 10. Let X ∈ so(p, q) be given by (7). Then [V1, X] = −X iff each identity below

holds.
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1. X2 =


0 (X2)12 · · · (X2)1q

(X2)21 0 · · · 0

...
...

. . .
...

(X2)p1 0 · · · 0



2. X1 =


0 −(X2)21 · · · −(X2)p1

(X2)21 0 · · · 0

...
...

. . .
...

(X2)p1 0 · · · 0

, X3 =


0 −(X2)12 · · · −(X2)1q

(X2)12 0 · · · 0

...
...

. . .
...

(X2)1q 0 · · · 0


That is, [V1, X] = −X iff

X =




0 −(X2)21 · · · −(X2)p1

(X2)21 0 · · · 0

...
...

. . .
...

(X2)p1 0 · · · 0




0 (X2)12 · · · (X2)1q

(X2)21 0 · · · 0

...
...

. . .
...

(X2)p1 0 · · · 0




0 (X2)12 · · · (X2)1q

(X2)21 0 · · · 0

...
...

. . .
...

(X2)p1 0 · · · 0



T 
0 −(X2)12 · · · −(X2)1q

(X2)12 0 · · · 0

...
...

. . .
...

(X2)1q 0 · · · 0





.

If λ ∈ R, we denote the λ-eigenspace of ad(V1) by

so(p, q)λ = {X ∈ so(p, q) : ad(V1)(X) = λX}.

Combining Lemma 1, 8, 9, and 10, we find that the eigenvalues of ad(V1) are precisely
−1, 0, 1. Moreover, so(p, q) is a direct sum of its eigenspaces. This proves Lemma 4.

Next, we apply Lemma 9. If a ∈ Rp−1 and b ∈ Rq−1, then

Y =


0 aT 0 bT

−a 0 a 0
0 aT 0 bT

b 0 −b 0

 ∈ n = so(p, q)1. (9)

A direct calculation shows [X,Y ] = 0 for allX,Y ∈ n. That is, n is an abelian Lie subalgebra
of so(p, q). Let

s = hp ⊕ n (10)

be a direct sum of subspaces. If t1, t2 ∈ R, and X1, X2 ∈ n, then [t1V1 +X1, t2V1 +X2] =
t1X2−t2X1 ∈ n. Then s is a Lie subalgebra of so(p, q). Let Ds = [s, s] denote the derived Lie
algebra of s, i.e., Ds is the real linear span of all [X,Y ] where X,Y ∈ s. Then Ds = n. Since
n is an abelian Lie algebra, the second derived algebra of s satisfies D2s = Dn = [n, n] = 0.
Thus, s is a solvable Lie algebra. This proves Lemma 6.
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Appendix B

Let A, N , and S be the connected Lie subgroups of O(p, q) with Lie algebras hp, n, and
s, respectively. Let AN = {an : a ∈ A, n ∈ N}. By definition, if Y ∈ n, then Y is
an eigenvector of ad(V1) with eigenvalue 1. Recall, if ϕ is a differentiable homomorphism
between Lie groups and dϕ is the differential at the identity, then ϕ ◦ exp = exp ◦ dϕ [3,
p.110]. In particular, Ad(etV1)(Y ) = et ad(V1)(Y ) = etY . Consequently, etV1eY e−tV1 =
exp(Ad(etV1)(Y )) ∈ N . Thus, AN is a group, and N is a normal subgroup of AN .

Clearly, AN ⊆ S. Moreover, since we have a direct sum in (10), and AN and S are
connected Lie subgroups, and there is a one-to-one correspondence between Lie subalgebras
and connected Lie subgroups, we obtain AN = S. Due to (10), the mapping β : A×N → S
given by β(a, n) = an is everywhere regular [3, p. 271, Lemma 5.2]. If Y ∈ n is given by
(9), we find

Y 2 = (bT b− aTa)


1 0 −1 0
0 0 0 0
1 0 −1 0
0 0 0 0


and Y 3 = 0. Then

eY = Ip+q + Y +
1

2
Y 2. (11)

Consequently, the restriction of exp to n is a bijection. Since exp maps hp bijectively onto
A, the mapping β : A × N → S is one-to-one. Applying the inverse function theorem, we
obtain β is a diffeomorphism onto S.

Corollary 11. Let A, N , and S be the connected Lie subgroups of O(p, q) with Lie algebras

hp, n, and s, respectively. Then

1. S = AN

2. N is a normal subgroup of S, and

3. The mapping β : A×N → S is a diffeomorphism where β(a, n) = an.

From Definition 3, the next lemma can be proved easily.

Lemma 12. For all t ∈ R, we find

1. α1(t)α2(t) = 2α(t)

2.
α1(t)

α2(t)
= et.

Let δ = bT b− aTa. Applying the exponential identity (11), we find

eα2(t)Y =


1 + 1

2δα2(t)
2 α2(t)a

T − 1
2δα2(t)

2 α2(t)b
T

−α2(t)a Ip−1 α2(t)a 0
1
2δα2(t)

2 α2(t)a
T 1− 1

2δα2(t)
2 α2(t)b

T

α2(t)b 0 −α2(t)b Iq−1

 . (12)

From Lemma 12, we directly obtain the following identities.
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(a) 1
2δα2(t)

2(cosh(t) + sinh(t)) = δα(t), and

(b) α2(t)(cosh(t) + sinh(t)) = α1(t).

Multiplying the matrices in (5) and (12), we obtain the next lemma. The matrix product
is rather elaborate.

Lemma 13. Let t ∈ R. Let Y ∈ n be given by (9), and using the entries of Y , let

δ = bT b− aTa. Then

etV1eα2(t)Y =


cosh(t) + δα(t) α1(t)a

T sinh(t)− δα(t) α1(t)b
T

−α2(t)a Ip−1 α2(t)a 0

sinh(t) + δα(t) α1(t)a
T cosh(t)− δα(t) α1(t)b

T

α2(t)b 0 −α2(t)b Iq−1

 . (13)

We point out an interesting result in [2, p. 136, Exercise 5] that we can combine with
Lemma 13. Since Y ∈ n is a 1-eigenvalue for ad(V1), we obtain the following.

Lemma 14. If Y ∈ n, then etV1eα2(t)Y = etV1+Y . Moreover, the exponential mapping is a

diffeomorphism from s onto S.

Proof The second claim of the above lemma follows since we have a composition of the
following diffeomorphisms.

(a) (tV1, Y ) ∈ s 7→ (tV1, α2(t)Y ) ∈ s

(b) (tV1, Y ) ∈ s 7→ (etV1 , eY ) ∈ A×N

(c) (a, n) ∈ A×N 7→ β(a, n) = an ∈ S

2

Let G ∈ O(p, q), and let G−1 = eXK0 be the S-polar decomposition of G−1 where
K0 ∈ K, X ∈ p. Let x = (x1, . . . , xp)

T ∈ Rp and v ∈ Rq−1 be chosen such that X ∈ p is
given by (3). From [7, Lemma 2.4], we recall the evaluation of eX . Namely,

X2 =

 xxT 0 −xvT

0 xTx− vT v 0
vxT 0 −vvT

 .

If we let β = xTx− vT v, we find X3 = βX. Then we obtain eX as follows.

Lemma 15. If X ∈ p is given by (3), and β = xTx− vT v, then

1. If β ̸= 0, then eX = I + sinh(
√
β)√

β
X + cosh(

√
β)−1

β X2.

2. If β = 0, then eX = I +X + 1
2X

2.

Let Y ∈ n be given by (9) where a ∈ Rp−1 and b ∈ Rq−1. Let δ = bT b − aTa. Given
t ∈ R, consider the matrix product

Z ≡ etV1eα2(t)Y eX . (14)
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Let Zk,l denote the (k, l)-entry of Z. Recall, the ξ in (6) is a function of X. We evaluate
the entries in the (p+ 1)st column of Z by multiplying etV1eα2(t)Y in (13) to eX in Lemma
15. Recall, X ∈ p is given by (3) where x = (x1, . . . , xp)

T ∈ Rp and v ∈ Rq−1. Let
x′ = (x2, . . . , xp)

T ∈ Rp−1.

Lemma 16. If k ̸= p+ 1, we have the following entries Zk,p+1 of Z.

(a) Z1,p+1 = sinh(
√
β)√

β
[cosh(t) + δα(t)]x1 + α1(t)

sinh(
√
β)√

β
aTx′+

[sinh(t)− δα(t)] cosh(
√
β) + α1(t)

sinh(
√
β)√

β
bT v

(b) If 2 ≤ i ≤ p, then Zi,p+1 = −ξα2(t)ai−1 +
sinh(

√
β)√

β
xi.

(c) If 1 ≤ i ≤ q − 1, then Zp+1+i,p+1 = ξα2(t)bi +
sinh(

√
β)√

β
vi.

Rewriting (a) in Lemma 16, we obtain

Z1,p+1 =
sinh(

√
β)√

β
cosh(t)x1 + δξα(t) +

sinh(
√
β)√

β
α1(t)

[
aTx′ + bT v

]
+ sinh(t) cosh(

√
β). (15)

Definition 4. Let X ∈ p be given by (3) where x = (x1, . . . , xp)
T ∈ Rp and v ∈ Rq−1. In

reference to (6), suppose ξ ̸= 0. Let x′ = (x2, . . . , xp)
T ∈ Rp−1, and let t ∈ R. Consider the

following vectors.

(a) at,X = 1
ξα2(t)

sinh(
√
β)√

β
x′ ∈ Rp−1

(b) bt,X = − 1
ξα2(t)

sinh(
√
β)√

β
v ∈ Rq−1

The following lemma follows directly from parts (b) and (c) of Lemma 16.

Lemma 17. We assume the given in Definition 4. Let Y ∈ n be defined by (9) where

a = at,X ∈ Rp−1 and b = bt,X ∈ Rq−1. For any t ∈ R, the entries of Z in (14) satisfy the

following.

(B) If 2 ≤ i ≤ p, then Zi,p+1 = 0.

(C) If 1 ≤ i ≤ q − 1, then Zp+1+i,p+1 = 0.

We substitute a = at,X and b = bt,X into δ = bT b− aTa and Z1,p+1 in (15). Then

Z1,p+1 =
sinh(

√
β)√

β
cosh(t)x1 +

1

ξ

(
sinh(

√
β)√

β

)2

(vT v − (x′)Tx′)

[
α(t)

α2(t)2
− α1(t)

α2(t)

]
+

sinh(t) cosh(
√
β).
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Notice,
α(t)

α2(t)2
− α1(t)

α2(t)
= −1

2
et.

Then

Z1,p+1 =
sinh(

√
β)√

β
cosh(t)x1 −

et

2ξ

(
sinh(

√
β)√

β

)2

(vT v − (x′)Tx′) + sinh(t) cosh(
√
β).

Multiplying both sides by 2ξ, we find

2ξZ1,p+1 = ξ

[
sinh(

√
β)√

β
(et + e−t)x1 + (et − e−t) cosh(

√
β)

]
−[

sinh(
√
β)√

β

]2
et
[
vT v − (x′)Tx′] .

Apply the definition of ξ.

2ξZ1,p+1 =

[
sinh(

√
β)√

β
x1

]2
e−t +

[
sinh(

√
β)√

β
x1

]
(et − e−t) cosh(

√
β)−

cosh(
√
β)

[
sinh(

√
β)√

β
(et + e−t)x1 + (et − e−t) cosh(

√
β)

]
−[

sinh(
√
β)√

β

]2
et(vT v − (x′)Tx′ − x2

1).

Observe, [
sinh(

√
β)√

β

]2
(vT v − xTx) = −

[
sinh(

√
β)√

β

]2
β = 1− cosh2(

√
β).

Substituting, we find

2ξZ1,p+1 =

[
sinh(

√
β)√

β
x1

]2
e−t −

[
sinh(

√
β)√

β
x1

]
e−t cosh(

√
β)−

cosh(
√
β)

[
sinh(

√
β)√

β
e−tx1 − e−t cosh(

√
β)

]
− et.

Thus,

2ξZ1,p+1 = e−t
[
ξ2 − e2t

]
(16)

Clearly, if t0 = ln(|ξ|) then Z1,p+1 = 0. Now, we combine Lemma 3 and 17.

Lemma 18. We assume the given in Definition 4. Let t0 = ln(|ξ|), and let Y ∈ n be defined

by (9) where a = at0,X ∈ Rp−1 and b = bt0,X ∈ Rq−1. Then Zk,p+1 = 0 for all k ̸= p + 1.

In particular, Z ∈ K.

We summarize the following results of this section.
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Theorem 19. Let p, q ≥ 2, S = Ip+q − 2Ep+1, and let G ∈ O(p, q). Applying the S-polar

decomposition, let G−1 = eXK0 where K0 ∈ K,

X =


0 x 0

xT 0 −vT

0 v 0

 ∈ p,

x = (x1, . . . , xp)
T ∈ Rp, v ∈ Rq−1. As defined in (6), suppose ξ ̸= 0, and let t0 = ln(|ξ|).

Moreover, let x′ = (x2, . . . , xp)
T ∈ Rp−1, and let a = at0,X ∈ Rp−1 and b = bt0,X ∈ Rq−1 be

given by Definition 4. Let

Y =


0 aT 0 bT

−a 0 a 0

0 aT 0 bT

b 0 −b 0

 ∈ n = so(p, q)1.

Then Z = et0V1eα2(t0)Y eX ∈ K by Lemma 18, and (K−1
0 Z−1, et0V1 , eα2(t0)Y ) ∈ K ×A×N .

The factorization G = (K−1
0 Z−1)et0V1eα2(t0)Y ∈ KAN is called a S-Iwasawa decomposition

of G.

When ξ = 0, there are some G ∈ O(p, q) that do not have a S-Iwasawa decomposition.
Consider the case X ∈ p in (3) where x = (1, 1, 0, . . . , 0)T ∈ Rp and v = (

√
2, 0, . . . , 0)T ∈

Rq−1. Recall, the first and second component of x are denoted by x1 and x2, and in this

case, x1 = x2 = 1. Then β = xTx− vT v = 0, sinh(
√
β)√

β
= 1, and from (6) we find ξ = 0. Let

G = e−X . Let Z be defined by (14) where t ∈ R and Y ∈ n. From Lemma 16(b), we find
Z2,p+1 = x2 = 1. Then Z /∈ K by Lemma 3 for all t ∈ R and Y ∈ n. Thus, G = e−X does
not have a S-Iwasawa decomposition.

4 General Case

The matrix S defined in (1), and the involution ρ of O(p, q) defined by inner-conjugation
by S is a special case of the following premise. Let w ∈ Rp+q satisfy wTJp,qw ̸= 0. Then

Sw = Ip+q − 2(wTJp,qw)
−1wwTJp,q (17)

is a Jp,q-Householder matrix, and we know S−1
w = Sw for instance see [5]. We define an

involution ρw of O(p, q) by inner-conjugation by Sw, i.e., ρw(A) = SwAS−1
w , A ∈ O(p, q). Let

dρw denote the differential of ρw at Ip+q. Then dρw is an involution of so(p, q) satisfying
dρw(X) = SwXS−1

w , X ∈ so(p, q). Consider the following eigenspaces of dρw and the
subgroup of fixed points of ρw.

(1) pw = {X ∈ so(p, q) : SwXS−1
w = −X}

(2) Kw = {X ∈ so(p, q) : SwXS−1
w = X}

(3) Kw = {K ∈ O(p, q) : SwKS−1
w = K}.
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In particular, if w = ep+1, then eTp+1Jp,qep+1 = −1 and we easily find Sep+1
= S. In such

a case, the sets in (1)-(3) agree with the sets in Definition 1. If wTJp,qw < 0, then there
is a Jp,q-Householder matrix D such that DSwD

−1 = S, DpwD
−1 = p, DKwD

−1 = K,
DKwD

−1 = K [7]. Thus, the Sw-Iwasawa decomposition of so(p, q) can be obtained by
conjugation from the S-Iwasawa decomposition of so(p, q). In fact, let hpw

= D−1hpD.
Clearly, hpw

is the linear span of D−1V1D. Applying the notation in Corollary 5, we obtain
the next lemma.

Lemma 20. If w ∈ Rp+q and wTJp,qw < 0, then there exists D ∈ O(p, q) where

(a) DSwD
−1 = S

(b) hpw
≡ D−1hpD is a maximal subspace of pw such that hpw

is an abelian Lie subalgebra

(c) the 1-eigenspace of ad(D−1V1D) is D−1nD

(d) we have a direct sum of subspaces, namely,

so(p, q) = Kw ⊕ hpw
⊕D−1nD,

the Sw-Iwasawa decomposition of so(p, q).

We still assume wTJp,qw < 0. Let Aw and Nw be the connected abelian Lie subgroups of
O(p, q) with Lie algebras hpw

and D−1nD, respectively. Using the notations from Theorem
19, clearly Aw = D−1AD, Nw = D−1ND, and Kw = D−1KD. By definition, DGD−1

has a S-Iwasawa decomposition iff DGD−1 ∈ KAN iff G ∈ KwAwNw, i.e., G has a Sw-
Iwasawa decomposition. Let DG−1D−1 = eXK0 where K0 ∈ K, X ∈ p, and evaluate the
corresponding ξ in (6). If ξ ̸= 0, then by Theorem 19 we find DGD−1 has a S-Iwasawa
decomposition, and G has a Sw-Iwasawa decomposition.

Now, we consider the case when wTJp,qw > 0. We review some background material in
[7, Lemma 18]. Let R be the backward identity matrix. We know R−1 = R and RJp,qR

−1 =
−Jq,p. Consequently, RO(p, q)R−1 = O(q, p) and Rso(p, q)R−1 = so(q, p). We denote Jq,p-
Householder matrices with a prime. If y ∈ Rp+q and yTJq,py ̸= 0, then

S′
y = Ip+q − 2(yTJq,py)

−1yyTJq,p

is a Jq,p-Householder matrix in O(q, p). Let v = Rw. Since wTJp,qw > 0, we know
vTJq,pv < 0, and RSwR

−1 = S′
v.

Let ρ′v and dρ′v denote involutions of O(q, p) and so(q, p), respectively, given by ρ′v(A) =
S′
vA(S′

v)
−1, A ∈ O(q, p) and dρ′v(X) = S′

vX(S′
v)

−1, X ∈ so(q, p). Similarly, define the
following eigenspaces and subgroup of fixed points.

(1) p′v = {X ∈ so(q, p) : S′
vX(S′

v)
−1 = −X}

(2) K′
v = {X ∈ so(q, p) : S′

vX(S′
v)

−1 = X}

(3) K′
v = {K ∈ O(q, p) : S′

vK(S′
v)

−1 = K}.

Also, we have the following identities.

(a) RpwR
−1 = p′v
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(b) RKwR
−1 = K′

v

(c) RKwR
−1 = K′

v

Applying Lemma 20 where O(p, q) is replaced by O(q, p), we know that any maximal
subspace of p′v that is an abelian Lie subalgebra should be 1-dimensional. Let h′pv

be such
a maximal subspace of p′v. We let h′pv

be the real linear span of some nonzero V ′
1 ∈ p′v. Let

n′ ⊆ so(q, p) denote the 1-eigenspace of ad(V ′
1). Then the direct sum

so(q, p) = K′
v ⊕ h′pv

⊕ n′

is the S′
v-Iwasawa decomposition of so(q, p). Since Rso(p, q)R−1 = so(q, p), let hpw

=
R−1h′pv

R. Then the direct sum

so(p, q) = Kw ⊕ hpw
⊕R−1n′R

is the Sw-Iwasawa decomposition of so(p, q). Finally, conjugating byR, the Sw-decomposition
of G ∈ O(p, q) exists iff RGR−1 has a S′

v-Iwasawa decomposition in O(q, p).
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