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Abstract

In this study, a network is used to analyse the spread of COVID-19 in Baguio City
from March 2020 to February 2021. A time-area-household-case model is derived from
the dataset by generating nodes using four characteristics, namely, the Onset of Illness
of a patient, residential barangay, household, and patient codes (pcodes) representing
each COVID-19 case. The model is then used to establish a unimodal network to
correlate case nodes and is measured using degree, local clustering, and betweenness
among closely related nodes. The model has isolated certain cases with relatively
interesting values from their neighbourhood, among which are cases in the beginning
and later months of infection during the COVID-19 timeline in Baguio City.
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1 Introduction

Coronavirus disease 2019 or COVID-19 is an infectious disease caused by the novel coro-
navirus SARS-cov-2, which is suspected of having originated from bats and pangolins and
has subsequently been transmitted to humans through an intermediary host [1, 2]. The
virus is present in the bodily secretions of the infected, which enables virus transfer through
skin contact and transmission via sneezing, coughing, and talking. With water droplets as
its carrier, the virus may linger in the air of an unventilated room or remain in a closed
environment and on various surfaces for a period of time [3]. Common COVID-19 symptoms
include coughs, shortness of breath, headache, fever, fatigue, and loss of taste or smell which
may develop into more severe pneumonia, dyspnea, and hypoxia. It usually takes around 3
to 7 days for a person to show symptoms after contact with the infected. Some take up to
two weeks or more [4, 5].

A COVID-19 patient is most infectious during the first week of showing symptoms.
Studies suggest that patients become contagious around 2 to 4 days before manifesting
the first signs of the disease, resulting in undetected presymptomatic infections. While
asymptomatic patients cause silent transmissions, experiments have shown their influence
to be minimal to none [6, 7].

With the help of current technologies and surveillance, it is now possible to track the
spread of the virus in communities, trace contacts, and isolate infections to prevent further
proliferation of the disease [8]. Among the different methods of investigating the spread of
the disease, social networks have been used to analyse and visualise the growth of infections
and interactions between social groups [9, 10].

A network is a set of nodes or points that are connected by a set of lines called edges.
Networks model correlations in which its nodes correspond to entities, and its edges represent
the relationship between nodes. Subsequently, multi-modal networks consist of two or more
distinct sets of nodes. With the flexibility of its use, networks have been applied in criminal
analysis, disease modelling, and structuring of real-world relationships [11, 12].

In this study, we attempt to use four factors: time, area, household, and individuals,
to infer possible correlations between entities from a given set of finite data through the
construction of a network model. In this case, we use the local COVID data to investigate
cases of infection in the local community of Baguio City, Philippines, from March 2020,
when the first infection in the city was detected, until February 2021.

2 Methodology

An epidemic occurs when an infectious disease has widely affected a population or region
during a certain period. Given this definition, we note two factors when inspecting the spread
of disease: people and their environment. Environmental factors include time and location.
Social factors include individuals and their interacting communities or social groups.

Likewise, we now define the entities considered in our model — time, area, social groups
and individuals. Suppose we consider the entities (time, area, household, individuals) as
independent sets of interacting nodes, we map the relationship among nodes of the same set
in the form of an adjacency matrix.

For instance, given a set of nodes N , its corresponding adjacency matrix is represented
by Nadj = [nb,d] where 1 ≤ b, d ≤ |N | such that nb,d = 0 if b = d; nb,d = ∞ if no relationship
exists between the nodes nb and nd; and nb,d = 1 if a relationship exists between the nodes
nb and nd, where nb, nd ∈ N . Hence, given the set of time nodes T = {t1, t2, . . . , tu}, area
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nodes A = {a1, a2, . . . , av}, household nodes H = {h1, h2, . . . , hw}, and nodes representing
individuals C = {c1, c2, . . . , cx}, the corresponding adjacency matrices of each set is defined
in Table 1.

Table 1: Summary of the General Conceptualisation of the Adjacency Matrices

Tadj = [ti,j ] =


t1,1 t1,2 · · · t1,u

t2,1 t1,2 · · · t2,u
...

...
. . .

...

tu,1 tu,2 · · · tu,u

,
where u = total no. of days being

considered and ti, tj ∈ T such that

1 ≤ a, b ≤ u, ti,j = 1 if |j − i| = 1,

ti,j = 0 if i = j, else ti,j = ∞

Aadj = [ak,l] =


a1,1 a1,2 · · · a1,v

a2,1 a1,2 · · · a2,v
...

...
. . .

...

av,1 av,2 · · · av,v

,

where v = total no. of distinct

locations being considered and

ak, al ∈ A such that 1 ≤ k, l ≤ v,

ak,l = 1 if the kthand lth locations

border one another (or if a direct

footpath ∃ between them),

ak,l = 0 if k = l, else ak,l = ∞

Hadj = [hp,q] =


h1,1 h1,2 · · · h1,w

h2,1 h1,2 · · · h2,w

...
...

. . .
...

hw,1 hw,2 · · · hw,w

,
where w = total no. of households

under consideration and hp, hq ∈ H

such that 1 ≤ q, r ≤ w, hp,q = 1 if

the pthand qth households are

direct neighbours (adjacent),

hp,q = 0 if p = q, else hp,q = ∞;

Cadj = [cy,z] =


c1,1 c1,2 · · · c1,x

c2,1 c1,2 · · · c2,x
...

...
. . .

...

cx,1 cx,2 · · · cx,x

,

where x = total no. of individuals

under consideration and cy, cz ∈ C

such that 1 ≤ y, z ≤ x, cy,z = 1 if the

ythand zth individuals are correlated

(i.e. have had direct contact with one

another), cy,z = 0 if y = z,

else cy,z = ∞

Suppose we consider points of time and area, households, and individuals as interacting
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sets of nodes, the relationship among nodes of different sets will be based on what causes
these nodes to be correlated. In this case, infection.

Then suppose we define a contagion α as an event in which infections have occured.
Like any event, every contagion would have a time of occurence and a location where the
infection has taken place. We use tα ∈ T to represent a day when α has occured and use
a(tα) ∈ A to represent the place affected by the contagion α during tα. Likewise, households
located in a(tα) that have been affected by the contagion α during tα may be represented
by h(a(tα)) ∈ H. Lastly, patients affected by α may be represented as c(h(a(tα))) ∈ C.
The purpose of these representations is to show the conditional relationship between nodes
(Table 2).

Table 2: Illustration of Infections through Node Relationships

Node Representation Description

Time tα Identifies a time when infections have taken

place

Area a(tα) Identifies an area affected by infections during

a particular period of time

Household h(a(tα)) Identifies an infected household in an area

during a given period of time

Case c(h(a(tα))) Specifies an infected individual

Patient records come with a variety of information, some of which may be isolated and
used as data to map out infections. For example, a single data entry contains a patient’s
name, testing date, personal information, residence, etc.

To investigate COVID-19-related infections, we isolate three basic information from each
entry: Onset of Illness, Home Address, and Name.

Onset of Illness is the date of when symptoms first manifested in symptomatic patients,
or the date of when asymptomatic patients were tested.

Home Address indicates a patient’s residential address. In this case, we only take the
barangay1 from each address.

Name identifies a patient. A patient’s surname will serve as an identifier for the house-
hold in which they belong. The patient themselves are each assigned unique patient codes
(pcodes) as case identifiers.

Note that all information used during the course of the study is masked under unique
codes. For example, the first day under consideration (02-03-2020) is coded as t1, the
area first affected by infections is coded as a1, the surname representing the first infected
household is coded as h1, and the first recorded COVID-19 patient in the city is coded as
c1. Codes are used for ease of data processing, for identifying the type of data (i.e. time or
area) and its sequence in the overall timeline. Actual dates and names of persons and places
are not visible. Dates, however, can be reverted given the visibility of the exact beginning
of the timeline.

1Barangay is a territorial unit in the Philippines. Baguio City can be divided into territorial units called

‘districts‘ and further into barangays.
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Table 3: Example of a Single Data Entry

pcode Surname Residence Onset of Illness

001 Dusslig Military Cut-off 2 Mar 2020

Table 4: Example of a Single Data Entry Coded

pcode Surname Residence Onset of Illness

c1 h1 a1 t1

2.1 Time-Area-Household-Case Model M

Based on the data structure used, we find a set of four entities {T,A,H,C}, with each
subset defined in Table 5.

Table 5: General Representations of Node Entities

Set Description

T = {t1, t2, . . . , tu} Set of entities representing the u number of days t from

2 March 2020 to 28 February 2021

A = {a1, a2, . . . , av} Set of entities representing the v number of barangays

a in Baguio City which have recorded COVID-19 cases

throughout the considered timeline

H = {h1, h2, . . . hw} Set of entities representing the w number of households

h in barangays a which have been infected within the

considered timeline

C = {c1, c2, . . . cx} Set of entities representing the x number of COVID-19

patients c reported in the City

Area is based upon the residential address of each infected patient. While we cannot
determine whether patients reside in the same residence, we can infer by matching their
data. We deduce that infected people that have been ill at around the same time t, who
belong to the same barangay a, and share the same surname h, are people that belong to the
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same household. On the basis of this three-point similarity, we assume that infected cases
satisfying these conditions indeed share a home. While this assumption may not entirely
be true, we use this as a linking factor for the purpose of exploring the model’s application.
Other information may be used (i.e. street, building, subdivision, etc.), but since these
information are not readily available, we use last name as a household indicator. Hence,
household entities h, represented by surnames, can only be mapped to one area a each.

From the patient data, we generate virtual nodes for the network model implementing
each node as a function β of four distinct data properties: time (Date of the Onset of
Illness), area (residence), household-identifier (last name), and case-identifier (patient code
or pcode; reinfected patients are given new pcodes to differentiate cases). In this way, all
nodes are generalised as β(p1, p2, p3, p4) and are segregated based on the properties they
have; p1 for time, p2 for area, p3 for household, and p4 for case.

Table 6: Nodes as a function of properties

As a function Description

β(t, null, null, null) A day from the period 2 March 2020

to 28 February 2021

β(t, a, null, null) Barangays affected by COVID-19 in

Baguio City during a given time t

β(t, a, h, null) A household under a particular area

a that has been infected during t

β(t, a, h, c) Infected individuals

We now define our network model as M = {N,E} with a set of nodes N and edges E,
such that N ∋ n, where n = β(p1, p2, p3, p4) and p1 ∈ T , p2 ∈ A, p3 ∈ H, p4 ∈ C; T , A, H,
and C being a set of nodes gathered from the same dataset but are used as properties to
generate the actual nodes used for the network model.

We also define an edge en,m ∈ E as an edge connecting two nodes n and m where
n,m ∈ N , n ̸= m, n = β(p1, p2, p3, p4) and m = β(q1, q2, q3, q4) such that

en,m =

4∑
i=1


Adj(pi, qi) if pi ̸= qi for pi, qi ̸= null

1 if pi ̸= qi for pi ∨ qi = null

0 if pi, qi = null

, (1)

where Adj(pi, qi) is the value of the adjacency between nodes pi and qi, from their
predetermined adjacency matrix (as indicated in Table 1).

Given that the only known relationships are those that exist between time nodes and
between area nodes, TAdj , AAdj are the only established adjacency matrices. HAdj and CAdj

will only have values of ∞ or 0 if pi = qi where pi, qi ∈ HAdj for i = 3 or pi, qi ∈ CAdj for
i = 4.
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As such, the edges may then be represented by an adjacency matrix Nadj mapping all
nodes in N , such that

Nadj = [ei,j ] =


e1,1 e1,2 · · · e1,s
e2,1 e1,2 · · · e2,s
...

...
. . .

...
es,1 es,2 · · · es,s

 ,

where 1 ≤ i, j ≤ s, s = |N |, and ei,j represents the value of the edge linking the ith node
to the jth node in the network and is defined by Equation 1.

2.2 Small Scale Example

To illustrate, we model a network for data entries of four patients c1, c2, c3, c4 with data
enumerated in Table 7.

Table 7: Sample Patient Data

pcode Surname Residence Onset of Illness

c1 h1 a1 t1

c2 h2 a1 t1

c3 h3 a2 t2

c4 h3 a2 t2

From the sample data presented in Table 7, acquire a set of nodes {T,A,H,C} each
with the following elements:

T = {t1, t2} time nodes
A = {a1, a2} area nodes
H = {h1, h2, h3} household nodes
C = {c1, c2, c3, c4} case nodes

We model our network Msmall = {N,E} where N ∋ n such that n = β(p1, p2, p3, p4)
and p1 ∈ T , p2 ∈ A, p3 ∈ H, p4 ∈ C. N will be a set containing the nodes in Table 8.
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Table 8: Nodes of the Small Scale Model M

Node Labels As a function of Data Properties

n1 β(t1, a1, h1, c1)

n2 β(t1, a1, h1, null)

n3 β(t1, a1, null, null)

n4 β(t1, null, null, null)

n5 β(t1, a1, h2, c2)

n6 β(t1, a1, h2, null)

n7 β(t2, a2, h3, c3)

n8 β(t2, a2, h3, null)

n9 β(t2, a2, null, null)

n10 β(t2, null, null, null)

n11 β(t2, a2, h3, c4)

Given the dataset, suppose T is a set of consecutive days correlated by the adjacency
matrix TAdj , where

Tadj =

t1 t2[ ]
0 1 t1

1 0 t2
,

while the relationship between nodes in A, H, and C are unknown, therefore,

Aadj =

a1 a2[ ]
0 ∞ a1

∞ 0 a2
, Hadj =

h1 h2 h3[ ]0 ∞ ∞ h1

∞ 0 ∞ h2

∞ ∞ 0 h3

, and Cadj =

c1 c2 c3 c4


0 ∞ ∞ ∞ c1

∞ 0 ∞ ∞ c2

∞ ∞ 0 ∞ c3

∞ ∞ ∞ 0 c4

.

Each of the edges e ∈ E would then be computed using Equation 1 to determine the
values of the edges connecting all nodes in N , resulting to the adjacency matrix NAdj as
follows
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NAdj =

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11



0 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ n1

1 0 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ n2

∞ 1 0 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ n3

∞ ∞ 1 0 1 ∞ ∞ ∞ ∞ 1 ∞ n4

∞ ∞ ∞ 1 0 ∞ ∞ ∞ ∞ ∞ ∞ n5

∞ ∞ 1 ∞ ∞ 0 ∞ 1 ∞ ∞ ∞ n6

∞ ∞ ∞ ∞ ∞ ∞ 0 1 ∞ ∞ ∞ n7

∞ ∞ ∞ ∞ ∞ 1 1 0 1 ∞ 1 n8

∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 0 1 ∞ n9

∞ ∞ ∞ 1 ∞ ∞ ∞ ∞ 1 0 ∞ n10

∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ 0 n11

.

NAdj is the matrix form of the network Msmall and is represented in Figure 1, which
shows only edges with finite nonzero values.

Figure 1: Small-scale Model

2.3 Modifying Time Properties

We consider the differences between asymptomatic, presymptomatic, and symptomatic pa-
tients relative to the collection of their samples for laboratory testing.

Asymptomatic patients are those that do not show COVID-19 symptoms.

Presymptomatic patients are infected patients that have not shown any COVID-19 symp-
toms at the time of testing but have developed symptoms after. They are recorded as
asymptomatic.

Lastly, symptomatic patients are infected patients that have already begun showing signs
of infection before testing.

Asymptomatic, presymptomatic, and symptomatic COVID-19 patients (those who do
not independently avail for testing despite showing symptoms) are discovered through ex-
panded testing (facility-wide testing of suspected groups of people or people highly at risk),
through contact tracing (testing the contacts of a COVID-19-positive person) or miscella-
neous testing (which are independent tests for travel purposes, medical operations, work
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requirements, and other purposes). Only some symptomatic patients undergo voluntary
testing as a result of the manifestation of symptoms.

Patients are considered infectious by the time they have begun manifesting symptoms.
[13] However, for asymptomatic patients, this point in time remains vague.

Based on local data, Onset of Illness for symptomatic patients is the day when they first
started showing their symptoms. For asymptomatic and presymptomatic, it is the day they
are tested or one day before.

Other than the Onset of Illness the dataset used in the study also contains other time
data such as the Collection Date, when testing was conducted, and Release Date, when
results of the test were publicly announced. From the dataset, the number of days between
each of these dates were computed for all patient entries; between the Onset of Illness and
Collection Date, Collection Date to the Release Date, and from the Onset of Illness to the
eventual Release Date. The computed general averages of each are shown in Table 9.

Table 9: Average No. of Days between Illness Onset, Sample Collection, and

Result Release based on Local Laboratory Tests for Patients not Expired.

Conditions
Onset to Collection to Onset to

Collection Release Release

Symptomatic patients excluding
3.34 2.50 5.84

those tested due to symptoms

Symptomatic patients 3.37 2.36 5.73

Asymptomatic patients 0.04 2.11 2.16

Both symptomatic and asympt-
1.72 2.24 3.96

omatic patients

Discounting symptom-grounded tests, the mean length of time from the Onset of Illness
of symptomatic patients to the collection of samples is 3.34 days.

Using the rounded delay in detection of symptomatic infections, we modify the Onset
of Illness for asymptomatic patients to be 3 days before their testing date, based on the
assumption that asymptomatic patients could not have suddenly developed the illness on
the day they were tested. There are too many situations to account for in considering when
a person may or might not have acquired then developed the illness. Hence, we use the
average delay in detection for symptomatic patients who were involuntarily tested as a basis
for standardising entries.

Additionally, based on the symptomatic averages, it takes around 6 days to detect a
contagious patient who has not otherwise healed on their own. Suppose that right after
a person is found to be infected, they are immediately quarantined and are monitored to
prevent further spread of the disease. We assume a 1-day leeway from the release of results
to the successful isolation of an infected individual. The resulting approximate 7 days from
the Onset of Illness to isolation is a window of infection when contagious persons remain
freely mobile throughout the city, not considering presymptomatic infectivity. This time
range will be used in inferring the relationship of infections that could possibly be related.
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2.4 Correlating Case Nodes

Earlier, the set of nodes T , A, H, and C were identified from the dataset in order to construct
the network model M . We now investigate the otherwise unknown correlation between C
nodes using the relationships established by M and aim to establish connections that do not
yet exist between nodes of a particular node class. Specifically, we focus on case nodes to see
how related a case is to the rest by creating direct links between nodes using pre-existing
connections in the network M . The resulting projection would then be represented as a
unimodal network U = {C,G} where C is the set of case nodes and G is the weighted set
of edges correlating each case node to another.

Note that the model M = {N,E}, and N ∋ n, n = β(p1, p2, p3, p4). If n has no
properties that are null, that is, p1 ̸= null, p2 ̸= null, p3 ̸= null, and p4 ̸= null; and p4 = c;
then n will correspond to a particular node c ∈ C ∀ n that satisfies the previous conditions.

Hence given any two case nodes c1 and c2, where c1, c2 ∈ C, such that c1 corresponds
to a node n1 and c2 corresponds to a node n2; we establish a correlation between c1 and c2
by creating an undirected edge g ∈ G that connects n1 to n2 such that the weight of g will
be the distance of the shortest path from n1 to n2.

2.4.1 Small Scale Example for Correlation

To illustrate, we use the small-scale network in Section 2.2 with nodes N ∈ Msmall listed
in Table 8. In particular, the nodes {n1, n5, n7, n11} are all generated from the function
β(p1, p2, p3, p4); p1 to p4 being properties derived from the time, area, household, and case
segments of each data entry. The same segments are identified as nodes belonging to the
sets T,A,H,C where p1 ∈ T , p2 ∈ A, p3 ∈ H, and p4 ∈ C, such that all nodes generated
with non-null properties will each correspond to a node c ∈ C, where c = p4. From the
small-scale example, n1 corresponds to c1, n5 to c2, n7 to c3, and n11 to c4, where the case
nodes C = {c1, c2, c3, c4}.

Figure 2: Small-Scale Correlation based on Example from Figure 1.

Shows the shortest-path links established from the first two correlations.



36 Oryan R.R., Addawe J.M., Addawe R.C., Viernes J.T., Panes D.T.

2.5 Limiting Correlations

Considering two cases c1 and c2, c1, c2 ∈ C where c2 was infected six months after c1.
Between the nodes that represent these cases, there would be a definite 180-day difference.
Hence, we limit our projection such that c1 and c2 would be linked based upon a reasonable
amount of time.

Symptoms can begin up to two weeks (14 days) after contact with an infected or some-
times, longer [14]. Hence we correlated case nodes c ∈ C against other case nodes with
time-points until 14 days after the 7-day contagion window.

In summary, we consider correlating a case node cy to another case node cz, where
cy, cz ∈ C and 1 ≤ y, z ≤ |C|, only if the Onset of Illness of cz is within 21 days after the
Onset of Illness of node cy.

2.6 Measuring the Network of Correlated Case Nodes

We use certain measures to rate the nodes in relation to their close neighbours rather than
the entirety of the network. Given a unimodal network of case nodes U = {C,G} where
C is a set of case nodes and G is the set of edges correlating case nodes in C, a case node
c ∈ C will be measured for its Degree, Local Clustering, and Betweenness.

Degree will measure the number of direct neighbours c has, showing how many other
people have been infected by COVID within 21 days before and after the Onset of Illness
of c.

Node Degree

Node degree deg(n) is the number of connections linked to a node n [12].

Node Clustering

Local Clustering Clstr(n) measures to how interconnected n is to its neighbors, through the
set of closed triplets τ△ such that given any two nodes u and v both linked to n, the set
of triplets u − n − v would form a closed triangle if u and v are connected as well. Local
Clustering is expressed as

clstr(n) =
τ△
τ
,

where τ△ is the number of closed triangles and τ is the total number of triplets in the
neighbourhood of n [12].

Limited Betweenness

Betweenness bet(n) is the measure of how much a node n serves as a bridge that connects
some nodes u to v where u ̸= v via the shortest path such that

Bet(n) =
∑ ∑

du→n→v∑
du→v

=
∑ sum of shortest paths from u to v, passing n

sum of all shortest paths from u to v
,

where u ̸= v ̸= n for all nodes u to v in the network [12]. However, we apply betweenness
measures to a subgraph around the vicinity of node n, determined by the distance dlimit,
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such that if the cumulative shortest path distance from any node to n exceeds dlimit, then
we no longer consider it to be within the vicinity of n. We set this limit to dlimit = 20 (to
make a comparison among data with at most a 20-point distance).

Local Clustering will measure how interconnected c is to its neighbours, while show-
ing how clustered or how congregated infections are in a particular neighbourhood when
comparing c to all other nodes within 21 days before and after its Onset of Illness.

Lastly, Betweenness will measure how much c serves as a connector to groups of infected
cases within 21 days before and after its Onset of Illness. For example, given two sets of
case nodes C1 and C2 where C1 ∋ c ∈ C2, if c is a node with the closest and most numerous
connections to nodes in both sets, and the resulting nodes from C1 ∩ C2 is few, then c will
have a high betweenness.

3 Results and Discussion

The first patient found to be COVID-19 positive was an overseas worker from Italy. The
infected arrived in Baguio City on March 2, 2020. Hence time nodes begin on this day until
February 28, 2021. During this span of time, there have been a total of 5560 COVID-19
Cases in the city.

Figure 3: Daily COVID cases in Baguio City from 2 March 2020 to 28 February 2021

as generated from the dataset used in the study

Infections in the one year timeline of the COVID-19 epidemic (Figure 3) in the city are
sectioned (as described in Table 10) based on the growth and decline of the disease. We
generate a network for each section and analyse them one by one.

3.1 Comparison on Case Time Changes

Using the data from Phase 2 of the timeline, we compare the changes in the model and
the resulting projection when the Onset of Illness of asymptomatic cases is pushed back by
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Table 10: Phase Division in the One-Year COVID-19 Timeline

Timeline Dates Cases
Avg. case-

Description
per-day

Phase 1 2-Mar to 18-Jul 65 1 Initial infections

Phase 2 4-Jul to 8-Aug 314 7 Moderate increase

Phase 3 22-Aug to 22-Nov 2650 30 Surge in cases

Phase 4 16-Nov to 28-Feb 2860 28 Maintained high freq.

three days.
The premise of shifting the nodes is to relate asymptomatic cases with uncertain Onset

of Illness to previously occurring symptomatic cases with definite onsets, given that the
Onset of Illness of symptomatic cases have always occurred before the testing date.

Figure 4: TAHC Model Phase 2 Comparison

When case nodes are shifted three days backward, the nodes, as well as their correspond-
ing household and area nodes, are mapped to a different set of time nodes which, in turn,
establishes different sets of links among adjacent area nodes and equal household nodes.
The difference is not evident in the visualisation of TAHC models (Figure 4) in the presence
of the multitude of data points. Hence, we evaluate the effects of the onset modification
reflected in their corresponding projections.
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Figure 5: Case Node Degree of Original and Modified

Phase 2 Models for correlated Case Nodes

Phase 2 begins on July four which we locally set as Day 1. This particular phase of the
dataset contains 314 cases, 218 of which are asymptomatic cases while the lesser remaining
are symptomatic. Therefore, the shift in node positioning involves the majority of nodes in
the network.

The highest degree value in the original model is 300, determined by nodes mapped to
day 35 (all asymptomatic), followed by a degree of 296 determined by nodes mapped to
day 36 (asymptomatic and symptomatic). In the modified model, the highest degree value
is 396, determined by nodes mapped to days 33, 34, and 35, followed by a degree of 295
determined by nodes mapped to days 36 and 37 (both asymptomatic and symptomatic as
shown in Figure 5).

None of the patients tested have had their symptoms begin on day 35 and after the
onsets shifted, the nodes once mapped to day 35 moved to day 32. Since these nodes hold
the most degrees, when they are moved, they carry their connections along.

Meanwhile, the lowest degrees are 55, 56, and 62 from the original model and 60, 62,
and 71 from the modified model, similarly determined by nodes mapped to days 1, 2, and
4. The cases represented by these nodes are symptomatic cases with fixed onset dates with
degrees influenced by the shifted nodes from subsequent days.

Figure 6: Local Case Node Clustering of Original and Modified

Phase 2 Models for correlated Case Nodes

Both models show greater clustering values (0.9 to 1) among nodes at the beginning of
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the Phase 2 timeline and subsequent lower local clustering values (0.2 to 0.5) for nodes at
the end of the timeline (Figure 6).

On the other hand, the Phase 2 models with the highest betweenness values are case
nodes mapped to day 40 while in the modified model, the highest betweenness values are
case nodes mapped to day 37, of which are nodes within the range of C150 to C210 for both
models (Figure 7).

The influence of the 3-day-pushback in Onset of Illness upon the connections in the
network for correlated case nodes is proportional to the amount of asymptomatic nodes
moved at a particular time point. The overall connections among asymptomatic nodes are
maintained while their relative links to prior symptomatic cases are strengthened and links
to succeeding symptomatic nodes are loosened.

Figure 7: Case Node Betweenness of Original and Modified

Phase 2 Models for correlated Case Nodes

3.2 Correlating Case Nodes

The dataset is modified such that the Onset of Illness is pushed back 3-days from the
testing date on the basis of the average time it takes a symptomatic patient to be tested
after the onset of their symptoms. Using the model constructed from this dataset, we derive
a relationship among case nodes by projecting the model in which we examine certain case
nodes that reflect interesting values.

There are a total of 5560 cases, each represented by case nodes C = {C1, C2, . . . , C5560}.

3.2.1 Phase 1

From March 2 to July 18 of 2020, cases C45, C46, and C47 have shown the greatest degree
(deg = 28, 27) followed by C48, C49, and C50 (deg = 23), while the case with the least
degree is C30 (deg = 7), as shown in Figure 8 (a).

Among betweenness values, shown in Figure 8 (b), the highest is from case C45 (bet =
0.919), followed by C30, C34, C35, and C36 (0.8 ≤ bet ≤ 0.9). The lowest betweenness of 0
is from cases C1 to C6, C37 to C41, C46, C47, and C65.

Regarding nodal clustering, shown in Figure 8 (c), cases C1 to C9 have shown the highest
values (0.9 ≤ clstr ≤ 1.0) while C44 to C54 have the lowest (0.7 ≤ clstr ≤ 0.9).

In particular, case C45 has numerous links and its neighbourhood is highly intercon-
nected. Its high betweenness implies locally relevant connections. We also have case C30
with few connections and a loosely linked neighbourhood but has a high betweenness value
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which is likely due to C30 having been affected first prior to several infections that have
occurred shortly after.

Lastly, we have cases C33 to C36 with degrees of around 14 to 15 (which are within
the overall average degree count for Section 1, ranging from 14 to 17), low clustering values
(clstr ≈ 0.14), and high betweenness (0.7 ≤ bet ≤ 0.9). Cases C33 to C36 are numbered
consecutively, implying that these cases have occurred successively or at around the same
time.

(a) Degree

(b) Betweenness

(c) Clustering

Figure 8: Node Degree, Betweenness, and Clustering

of the Phase 1 Model for correlated Case Nodes

Figure 9 shows the correlated case nodes in the unimodal case-node network for Phase 1,
where darker shades indicate high betweenness values among case nodes and lighter shades
indicate lower betweenness among nodes.
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Figure 9: Phase 1 Model highlighting Limited Betweenness for correlated Case Nodes

(a) Degree

(b) Betweenness

(c) Clustering

Figure 10: Node Degree, Betweenness, and Clustering

of the Phase 2 Model for correlated Case Nodes
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3.2.2 Phase 2

From July 4 to August 28 of 2020, the network shows greater node degrees (shown in Figure
10 (a)) compared to Phase 1 of the COVID-19 timeline. From an average of 1 case per
day in Phase 1 to 7 cases per day in Phase 2, the increase in cases contributes to the
growth in nodal interconnections with degrees in the range of 7 ≤ deg ≤ 28 in Phase 1 and
60 ≤ deg ≤ 296 in Phase 2.

Similarly, the rise in clustering values of Phase 2 (average clstr ≈ 0.709) in comparison
to Phase 1 (average clstr ≈ 0.272) indicates growth in node interconnection brought about
by the increase in subsequent infections (refer to Figure 10 (b)).

On the other hand, betweenness values occupy a smaller and lower range in Phase 2
(0 ≤ bet ≤ 0.30) as compared to Phase 1 (0 ≤ bet ≤ 0.92) showing that the nodes in Phase
2 are more evenly positioned among closely related neighborhoods (refer to Figure 10 (c)).

3.2.3 Phase 3

From August 22 to November 22 of 2020, node degrees increase (average deg ≈ 1335) with
the surge in COVID-19 cases while the overall clustering values decrease throughout time;
clustering being 0.9 ≤ clstr ≤ 1 for the first 59 cases with degrees 202 ≤ deg ≤ 278 for
infections that have occurred within days 1 to 6 of Phase 3. Node neighbourhoods derived
from the first six days show highly interrelated cases (Figure 11 (a) and (c)).

Clustering values decrease to 0 ≤ clstr < 0.2 for cases from day 46 onward for the last
1209 case nodes with degrees ranging at 616 ≤ deg ≤ 1665. The neighbourhoods in this
time range are less interconnected while having more numerous links.

Betweenness on the other hand ranges from 0 ≤ bet < 0.33, the highest values being
0.30 ≤ bet < 0.33 from cases C406 to C504 (bet ≈ 0.301) occurring at day 22 of Phase 3,
and cases C1581 to C1696 (0.30 < bet < 0.33) which are infections during days 51 to 53.

3.2.4 Phase 4

From November 16, 2020 to February 28, 2021 (refer to Figure 12), the overall node degrees
decrease (average deg ≈ 1147), falling within the range 519 ≤ deg ≤ 1445 while the measured
node betweenness range from 0 ≤ bet < 0.35.

Meanwhile, clustering values begin with clustering values 0.90 ≤ clstr ≤ 1 for cases in
the first 13 days of the timeline and declines to 0 < clstr < 0.2 from day 43 onwards.

We highlight certain nodes holding values of interest such as class nodes with degree and
betweenness measure values among the highest or lowest in Phase 4 of the timeline.

We define link importance to be the likelihood of links to have contributed to contact
infections, which we infer preliminarily using betweenness values. Samples 1 and 2 from
Table 11, represent nodes with the highest betweenness and degree values or cases with the
most important links in the neighborhood of nodes mapped to days within or close to days
42 and 43 of Phase 4.

Samples 3 and 4 represent nodes with the highest degree but moderate betweenness
overall. However, they hold the most important links among nodes mapped to days within
or close to days 47 and 55.

Lastly, Sample 5 represents a section of nodes that have the least connections and the
least significant links given their betweenness value of zero.

Interestingly, the cases represented by these nodes all belong to the same area (area code
A7) and the same day (D56) which provides these nodes with short direct links among one
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(a) Degree

(b) Betweenness

(c) Clustering

Figure 11: Node Degree, Betweenness, and Clustering

of the Phase 3 Model for correlated Case Nodes

another. Zero betweenness value indicates that there exists a much shorter set of links that
interconnect these nodes indirectly.

Figure 13 shows the correlated case nodes in the unimodal network for Phase 4, where
darker shades indicate high betweenness values among case nodes and lighter shades indicate
lower betweenness among nodes. Note, however, that nodes at the ends of the timeline are
of a lighter shade because connections to nodes before and after the timeline of Phase 4
were not considered.

4 Conclusion

The weight between nodes that do not share similarities in their data are assigned values
relative to how far apart infections are in terms of time. Hence, infections represented by
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(a) Degree

(b) Betweenness

(c) Clustering

Figure 12: Node Degree, Betweenness, and Clustering

of the Phase 4 Model for correlated Case Nodes

case nodes, such as C30 and C33-C36, which have taken place shortly before the occurrence
of multiple infections reflect values significantly distinct from its neighbourhood. However,
as infections become more frequent, the network becomes much more interconnected. As
the network grows, nodes become more clustered and show more similar than unique inter-
connections, resulting to groups of nodes holding similarly high or low measures rather than
each node being individually segregated, as displayed in Phase 3 and 4. On the other hand,
Phase 1, which holds a smaller dataset, singles out distinct nodes rather than clusters.

The relationship modelled through the TAHC network relies mostly on time difference
to create distance between nodes. Although the area and household similariy between data
allows nodes to be grouped, time has the most influence on edge weight when establishing
unimodal relationships.

The network model uses the time-area-household-case conditions to identify relationships
from a pool of information, similar to a search criteria that specifies requirements of a
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Table 11: Phase 4 Nodes of Interest

Label Period Case Nodes Degree Betweenness

Sample 1 Day 42 C3851 to C3870 1398 0.348

Sample 2 Day 43 C3871 to C3939 1414 0.347

Sample 3 Day 47 C4008 to C4040 1445 0.296

Sample 4 Day 55 C4295 to C4339 1414 0.219

Sample 5 Day 56 C4352 to C4357 535 0

Figure 13: Phase 4 Model highlighting Limited Betweenness for correlated Case Nodes

product. Its tiered structure similar to a network tree allows the ranking of correlations
between entities based on known similarities via a shared characteristic which we represent
in the form of node properties.

Using other properties of an entry from the available dataset might lead to more success-
ful grouping of relationships; the recommended criterias being workplace, shifts (i.e. active
working hours), age (which may determine activity throughout the day) or other relat-
ing factors. Additionally, properties with more concretely determined relationships among
nodes of the same kind are recommended. The model may also be extended to more than
four properties to reduce vagueness or shorten the number of properties used to reduce
specificity.

Overall, networks that aim to model real-world relationships, more often than not, result
in complex and convoluted correlations. Likewise, the TAHC model. While more nodes and
connections incorporated in the network makes for a more realistic model, it becomes just
as difficult to interpret. But in this way, projection or conversion methods can select and
isolate relevant relationships for analysis and serve as transformative measures that evaluate
existing multimodal relationships.

Lastly, the conversion of its multi-layered relationships to a unimodal network simplifies
such complexities into something more readable but will result in the framing of the model
into only one perspective. While the model may be shown in a way that allows one to
obtain a coherent series of relationships, other possibilities of interpretation will no longer be
considered. That is, the original TAHC model can be used to establish correlations between
area nodes or household nodes instead of case nodes by shedding away the properties that
succeed it, but will lose this possibility once converted to a unimodal network consisting
only of case nodes.
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