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Abstract

In this paper, we will discuss the resolution of identity formula arising from unitary
representations of various groups, those consisting of orthonormal bases and those con-
sisting of overcomplete systems in Hilbert space. We will construct coherent states on
the discrete cylinder and apply these to the quantization of time of arrival functions.
We will also construct localization operators on the Lp−spaces on the infinite cylinder
viewed as parameter space of translations and rotations, for p = 1, 2, and ∞. The case
for general p ∈ [1,∞] requires some interpolation formula on the cylinder which the
authors do not possess.
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1 Introduction

Coherent states were first introduced by E. Schrödinger [37] in his investigations of quan-
tum states whose behavior are nearest to the classical one, for instance, the averages satisfy
Newton’s Second Law [24]. What are now called canonical coherent states or harmonic oscil-
lator coherent states are characterized by several properties that make them mathematically
interesting and useful [3, 29]. In this paper, the most important property of coherent states
is their use in the decomposition of the identity operator in Hilbert space, from which most
of the important applications arise. In [5], canonical coherent states were used in the study
of Hilbert spaces of analytic functions. R. Glauber used the canonical coherent states [10]
in quantum optics to model coherent phenomena such as the then recently discovered laser.
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In [10, 11], coherent states were used extensively to decompose, akin to Fourier decom-
position, quite general quantum states and observables. In these works and also in [1, 2]
and [41], coherent states were used in the study of phase space representation of states and
observables via what are now called quasiprobability distributions, as well the fundamental
problem of operator ordering. The ordering problem has been one of the important prob-
lems recognized quite early in the history of quantum mechanics, and is crucial in quantum
measurement. For instance, the Wigner quasiprobability distribution appear as symbols for
the Weyl ordering, while the P−distribution, also called the Glauber-Sudarshan distribu-
tion, and the Q−distribution (or the Husimi distribution) are symbols of the normal and
anti-normal orderings, respectively [3, 7, 10, 11, 29, 12]. Symbols are phase space functions
corresponding to quantum operators under a quantization/dequantization scheme. The use
of coherent states in quantization is advocated by J.-P. Gazeau and coworkers [3, 7, 24], due
to the success of previous investigations on the P− and Q−distributions and their utility in
quantum optics. It was Klauder and Berezin who introduced the general theory of coherent
state quantization and dequantization, with Berezin giving emphasis on the mathematical
developments and connections [28, 29]. Applications to signal analysis was taken up by
Daubechies and coworkers [13, 14, 15] via the wavelet transform, introduced in [26], and
whose development is intimately connected with unitary group representations. Most mod-
ern mathematical treatments of generalizations of the wavelet transform at present rely on
unitary group representations as this provide the most fruitful line of investigation.

This work presents myriad expressions for the identity operator on Hilbert space H. The
main object of focus is that of coherent states arising from, but not restricted to, unitary
irreducible representations of groups. We provide several new examples from our own work
in phase space representation of quantum mechanics [31, 36]. Coherent states will mostly
be constructed from the harmonic analysis of groups via unitary group representations. In
particular, we know of no example of coherent state quantization of a confined time of arrival
function [23]. On the other hand, our coherent state quantization of the discrete cylinder
provides provides a simpler and viable quantization of angle, in contrast to the complicated
Weyl quantization in [32, 33]. Furthermore, the theory of coherent states is very rich that
we strongly feel that they should be introduced to mathematics students (especially in the
Philippines). For advanced mathematics students, coherent states is an excellent path to
learn quantum mechanics, which is historically the source of much important development in
mathematics, for example, linear operators, spectral theory, unitary group representations
and C∗−algebras, to name a few [5, 6, 8, 15, 18, 35, 42].

The plan of the paper is as follows. In Section 2, a quick introduction to quantum
mechanics is given, emphasizing the state-observable formalism, in analogy with classical
mechanics. Then the bra-ket notation of Dirac is explained [34]. Next, the basic properties
of the harmonic oscillator coherent states are listed and discussed, one of which is the
resolution of the identity operator in the Hilbert space L2(R). Other basic examples of the
resolution of identity are given coming from the Fourier theory. Section 3 generalizes the idea
using unitary group representations mainly through the Peter-Weyl Theorem. In Section
4, genuine expressions for the resolution of the identity will be given using overcomplete
families of spanning vectors or coherent states. Section 5 continues the discussion in Section
4, but through the development of basic ideas in phase space quantum mechanics, the
time-frequency, and wavelet representation of signals. In the final section, Section 6, recent
results of the authors on the applications of coherent states to quantization and localization
operators will be presented.
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2 Preliminaries and First Examples

We now give a brief introduction to the mathematical formalism of standard quantum
mechanics and some of the notations used which may not be familiar to a mathematical
audience. In classical mechanics, for a system with one degree of freedom and without
constraints, the phase space is R2 = {(q, p)}, the set of all possible position-momentum
pairs (q, p). Elements of the phase space are called states. Classical observables are functions
f(q, p) = f(q(t), p(t)) on the set of states. There is a distinguished observable H(q, p) called
the Hamiltonian or energy of the system which determines the evolution of the system,
and is governed by Hamilton’s equation df/dt = {H, f}, in terms of the Poisson bracket
between a pair of functions, defined by {f, g} = ∂qf∂pg− ∂pf∂qg. For the simple harmonic
oscillator the energy observable is H(q, p) = p2/2m+(1/2)mω2q2, where m is mass and ω is
frequency. A simple computation tells us that Hamilton’s equation implies Newton’s Second
Law d2q/dt = −ω2q for this system. Similar to classical mechanics, quantum mechanics is
a state-observable system. Quantum states are normalized vectors ψ in a Hilbert space H,
called the system Hilbert space, with the proviso that two vectors ψ and ψ′ represent the
same state if ψ′ = eikψ, for some real number k. Quantum observables are self-adjoint
operators Â : H −→ H, and there is a distinguished observable Ĥ which determines the
evolution of the system, given by dÂ/dt = (i/ℏ)[Ĥ, Â], where [Ĥ, Â] is the commutator

Ĥ ◦ Â − Â ◦ Ĥ. Canonical quantization gives Ĥ = P̂ /2m + (1/2)mω2Q̂2 for the quantum

Hamiltonian of the harmonic oscillator. The operators Q̂, P̂ : L2(R) −→ L2(R) are defined

by Q̂ψ(q) = qψ(q), P̂ψ(q) = −iℏψ′(q), respectively [20, 42].
For our purposes, throughout this paper, we will use the bra-ket notation of Dirac. States

will be written |ψ⟩ instead of ψ. In a Hilbert space, there is a one-to-one correspondence
between vectors and linear functionals. Linear functionals will be denoted by bra vectors
⟨ψ| : H −→ C so that the action on vectors is consistent with the inner product notation:
⟨ψ|(|φ⟩) = ⟨ψ|φ⟩. An important linear operator that will be considered all throughout is the
projection |ψ⟩⟨φ| : H −→ H given by |ψ⟩⟨φ|(|α⟩) = ⟨φ|α⟩|ψ⟩.

The family of harmonic oscillator coherent states, which are the most important example
of coherent states, consists of the states |q, p⟩ = |z⟩ ∈ L2(R) parametrized by z = q+ ip ∈ C.
The characteristic properties of these states are the following:

1. ⟨△Q̂⟩z⟨△P̂ ⟩z = ℏ
2

2. |z⟩ = e
i
ℏ (zâ†−zâ)|0⟩

3. â|z⟩ = z|z⟩

4. I = 1
π |z⟩⟨z|dzdz

Item (1) states that coherent states |z⟩ minimize the Heisenberg uncertainty inequality,
while the second property says that such states belong to the orbit of a certain group
action. The last two say that the coherent states form a complete system of eigenstates
of the annihilation operator â, familiar from textbook analysis of the quantum harmonic
oscillator. The so-called resolution of the identity, in item (4), is interpreted in the weak
sense. That is

⟨ψ|φ⟩ = 1

π

∫
C
⟨ψ|z⟩⟨z|φ⟩dzdz.

In many important cases, the much stronger relation of state or signal recovery is pos-
sible |φ⟩ = 1

π

∫
C |z⟩⟨z|φ⟩dzdz, in complete analogy with Fourier decomposition of square-
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integrable functions. If such a relation can be discretized, then many important applications
are possible [12, 25]. Further details on the canonical coherent states may be found in [19, 24].

We now look at the simplest example of a complex finite-dimensional vector space V ∼=
Cn. Let {|k⟩ ∈ V : k = 1, ..., n} be an orthonormal basis, so that we have the usual
Fourier decomposition |v⟩ =

∑n
k=1⟨k|v⟩|k⟩. This is equivalent to Parseval’s identity ⟨u|v⟩ =∑n

k=1⟨u|k⟩⟨k|v⟩.We, therefore, see here the simplest instance of the resolution of the identity

IV =

n∑
k=1

|k⟩⟨k|. (1)

Consider the sequence space ℓ2(N) consisting of vectors |a⟩ = (a1, a2, a3, ...), where ak ∈
C.We have the exact same Fourier decomposition, using say the standard basis elements |k⟩
consisting of 1 at the kth site and zero elsewhere: |a⟩ =

∑∞
k=1⟨k|a⟩|k⟩. This is equivalent to

Parseval’s identity ⟨b|a⟩ =
∑∞
k=1⟨b|k⟩⟨k|a⟩, so that we again obtain the resolution of identity

Iℓ2(N) =
∑∞
k=1 |k⟩⟨k|. Any separable Hilbert space H is isomorphically isometric to ℓ2(N) so

that a resolution of the identity on H is always available [20, 40].
We look particularly at the important case of the Hilbert space H = L2(T), where T is

the one-dimensional torus [0, 2π). An orthonormal basis is given by the functions χn : T −→
C, χn(x) = einx, n ∈ Z. If f, g ∈ L2(T), then we have Parseval’s identity

⟨g|f⟩ =
∑
n∈Z

⟨g|χn⟩⟨χn|f⟩ =
∑
n∈Z

ĝ(n)f̂(n),

where f̂(n) = ⟨χn|f⟩ = 1
2π

∫ 2π

0
f(x)e−inxdx is the nth Fourier coefficient of the function f.

We thus obtain the resolution of the identity

IL2(T) =
∑
n∈Z

|χn⟩⟨χn|.

This identity implies the stronger Fourier series decomposition (equivalent to Parseval’s

identity, of course) |f⟩ =
∑
n∈Z⟨χn|f⟩|χn⟩ =

∑
n∈Z f̂(n)e

in(·)[20, 40].

A non-discrete example. Consider the Hilbert space H = L2(R). Similar to the
Fourier series decomposition of square-integrable functions on the circle, square-integrable
complex-valued functions on the real line R may be expanded in terms of pure plane waves
χξ(x) = eiξx. Indeed, we have the Fourier inversion formula f(x) = 1√

2π

∫∞
−∞ f̂(ξ)eiξxdξ,

where f̂(ξ) = ⟨χξ|f⟩ = 1√
2π

∫∞
−∞ f(x)e−iξxdx defines the Fourier transform f 7→ f̂ . The

resolution of the identity in this case takes the integral form

IL2(R) =
1√
2π

∫ ∞

−∞
|χξ⟩⟨χξ| dξ.

In these examples, except for the last one, orthonormal basis elements were used to
decompose the identity operator. Notice that in the last example, the functions χξ do not
belong to L2(R)[20, 40]!

3 Harmonic Analysis on Groups

To unify the examples above, we look at the unitary representations of abelian groups.
We introduce some general definitions first. If G is a group, a unitary representation of G
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in the inner product space H is a group homomorphism T : G −→ U(V ) into the group of
unitary operators on H. Thus, T (e) = IH is the identity operator, T (gh) = T (g)T (h) is the
homomorphism property, T (g)−1 = T (g−1) is the inverse and ⟨T (g)u, T (g)v⟩ = ⟨u, v⟩ for
any g ∈ G and u, v ∈ H. This last property is unitarity of the operators T (g) : H −→ H.
For many applications, the groups are also smooth manifolds, so some continuity property
is required of T. For instance, if G is a Lie group, then the mapping G −→ V given by
g 7→ T (g)v must be continuous for each v ∈ V. If U is a subspace of H, it is called an
invariant subspace of T if T (g)u ∈ U for all g ∈ G, u ∈ U. The representation T is said to be
irreducible if the only invariant subspaces are {0} and H. For finite and compact groups, and
most groups of importance (classical Lie groups), the unitary irreducible representations,
abbreviated to UIR, are sufficient to decompose L2-functions on the groups and implement
harmonic analysis on the groups and homogeneous spaces of the groups. For finite and
compact groups G, there are countably many UIRs, up to equivalence, and each is finite-
dimensional, so one may choose orthonormal bases in the representation spaces and express
matrix elements in the bases. A well-known and important result is that the matrix elements
of the UIRs form an orthonormal basis for L2(G) [38, 40]. This allows for harmonic analysis
on G, which is completely parallel to the standard ones on G = S1 (Fourier series) and on
G = R (Fourier transform). For abelian groups, the UIRs are all one-dimensional.

1. In case of the one-dimensional torus T, the UIRs are the homomorphisms χn : T −→
U(C) ∼= C× ..= C \ {0}, parametrized by the integers, and given by χn(x) : z 7→ einxz,
a multiplication operator.

2. In case G = R, the UIRs are parametrized by the real numbers: χξ : R −→ U(C),
again given by multiplication χξ(x) : z 7→ eiξxz.

3. For the finite-dimensional case in the very first example, G = Zn and V = F(G),
which is the space of all complex-valued functions on a finite set of n elements. This is
nothing but Cn, as indicated above in the paragraph of equation (1). For the group Zn,
the UIRs form a group {|k⟩ : k = 0, ..., n− 1} = {χk : Zn −→ C× : χk(j) = e2πikj/n}
isomorphic to Zn and the Fourier decomposition of functions in F(Zn) is precisely
what is given above, entirely analogous to the case G = Z or G = R.

Further details may be found in [38, 40].

Nonabelian examples. It is precisely through unitary group representations that har-
monic analysis on groups other than the abelian ones is possible. If G is a compact group,
including the finite ones, there are countably many inequivalent unitary irreducible represen-
tations ρn : G −→ U(Vn) and each Vn is finite-dimensional, say dimVn = dn. Choosing or-
thonormal basis {ek} in Vn, matrix elements unij : G −→ C are given by unij(g) = ⟨ei|ρn(g)ej⟩.
The Peter-Weyl Theorem states that the set {

√
dnu

n
ij}n,i,j forms an orthonormal basis for

H = L2(G) [40]. This means that completely analogous to classical Fourier series, for
f ∈ L2(G),

f =
∑
n,i,j

dn⟨unij |f⟩unij .

Using the bra-ket notation, |f⟩ =
∑
n,i,j dn⟨unij |f⟩|unij⟩. We therefore have the resolution of

identity

IL2(G) =
∑
n,i,j

dn|unij⟩⟨unij |.

The permutation group G = S3.
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G = S3 has 3 unitary irreducible representations:

• identity representation−1-dimensional

• permutation representation−1-dimensional

• standard action by S3
∼= D3−2-dimensional

The matrix elements are the six functions: f1 ≡ 1, f2(σ) = (−1) sgnσ, and the functions fk
below (

f3 f4
f5 f6

)
where the values are the corresponding entries of the following matrices

(
1 0
0 1

)
,

(
−1/2 −

√
3/2√

3/2 −1/2

)
,

(
−1/2

√
3/2

−
√
3/2 −1/2

)
,

(
1/2

√
3/2√

3/2 −1/2

)
,

(
−1 0
0 1

)
,

(
1/2 −

√
3/2

−
√
3/2 −1/2

)
.

Here, sgnσ is 1 if σ is an even permutation, and −1 if σ is an odd permutation and the
values of f3 are the entries a11, the values of f4 are the entries f12, and so on. The resolution
of identity on H = L2(S3) ∼= C6 is given by the sum

Î =

6∑
k=1

dk|fk⟩⟨fk|.

Here, d1 = d2 = 1 while di = 2, i = 3, 4, 5, 6.

The spin group G = SU(2).

SU(2) is the group of two by two unitary complex matrices

(
a −b
b a

)
, |a|2 + |b|2 = 1.

Equivalently, in terms of Euclidean norm, ||g ·X|| = ||X||, and det g = 1. Here, g ∈ SU(2)
and X ∈ C2.

It is well known that the UIRs of SU(2) are parametrized by the nonnegative integers Un :
G −→ Hn, where Hn

∼= Cn+1 and Un is standard action of the matrices g on homogeneous
polynomials in 2 variables. This means that [Un(g)P ](z) = P (g−1 · z). In more details, the
action is entirely determined by Un(g)(zk1z

n−k
2 ) = (az1 + bz2)

k(cz1 + dz2)
n−k, where g−1 =(

a b
c d

)
. By the Peter-Weyl theorem, the matrix elements given by the inner product Unij

..=

⟨ei|Un(g)ej⟩ form an orthonormal basis for L2(SU(2)) [40] and this gives the resolution of

the identity I =
∑
n,i,j

(n + 1)|Unij⟩⟨Unij |. SU(2) is a double cover of the three-dimensional

rotation group SO(3) so that the representation Un factors through a UIR of SO(3). Each
n gives a UIR on H ∼= C2n+1 and once again, this gives a resolution of the identity IL2(SO(3)).
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4 Group Coherent States

It turns out that the ideas in the previous section can be generalized considerably. The
idea is provided by the caseH = L2(R) and the resolution of identity arising from the Fourier
inversion formula. However, we want the system of vectors |eα⟩ used in the decomposition
of the identity operator to lie in H, which is not the case in Fourier inversion. On the
other hand, as in Fourier inversion, we do not insist on orthonormal bases to decompose the
identity, which is the case for all the other Hilbert spaces considered above. We allow what
are called overcomplete systems in Hilbert space [9]. Proposition 3 below is a more general
statement than what is found in the literature on tight group frames, and the example on
the rotation group at the end of this section, although a direct application of a general
construction, is our own observation, inspired by the planar example before it.

Definition 4.1. Let H be a Hilbert space and X be a measure space with measure dµ.

The family of vectors A = {|eα⟩ : α ∈ X} ⊂ H is called an overcomplete system in H or a

system of coherent states if

⟨f |g⟩ =
∫
X

⟨f |eα⟩⟨eα|g⟩dµ(α)

for any pair |f⟩, |g⟩ ∈ H.

Therefore, a vector |f⟩ in H uniquely determines a function f̃ ∈ L2(X) given by f̃(α) =
⟨f |eα⟩ so that H embeds in L2(X) and since ⟨f |f⟩ =

∫
X
⟨f |eα⟩⟨f |eα⟩dµ(α), the embedding

is an isometry, that is ||f ||H = ||f̃ ||L2(X). Usually, there is a further requirement that the
mapping α 7→ |eα⟩ be continuous [29]. We do not impose this requirement as we will
consider finite and discrete measure spaces X. The discrete topology restores this continuity
condition but is immaterial in this case. What is more important in the discrete case is the
concept of frames [15].

Definition 4.2. Let H be a Hilbert space and J be a countable set. A family of vectors

A = {|ej⟩ : j ∈ J} is called a frame in H if there exist positive constants α ≤ β such that

α||f ||2 ≤
∑
j∈J

|⟨f |ej⟩|2 ≤ β||f ||2, for all f ∈ H.

If α = β then the |ej⟩ are coherent states or that A is a tight frame. The inequality on

the left implies that the embedding |f⟩ 7→ f̃(i) = ⟨f |ej⟩ is one-to-one, while the inequality
on the right implies that this mapping is bounded. In this paper, we will be only interested
in the case where α = β.

A basic example. Let G be a finite group. Fix a unitary irreducible representation
ρ : G −→ U(H) in the Hilbert space H and fix a vector |0⟩ ∈ H. Write |x⟩ = ρ(x)|0⟩.

In the following proposition, we obtain whole families of resolution of the identity on
finite-dimensional Hilbert spaces and on the space of linear operators on them. Note that
the standard formulation is

∑
x∈G |x⟩⟨x| = cÎ, while our statement is

∑
x∈G |x⟩⟨y| = cÎ. We

do not find this exact statement in the literature, but it is probably folklore. We do not
find it used in an explicit way either. A work in preparation of the first author on discrete
quantum mechanics uses this expression in a formulation of sequential position-momentum
and sequential momentum-position measurments.
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Proposition 4.3. Let G be a finite group and ρ be a UIR of G in H.

1. Write |x⟩ = ρ(x)|0⟩. Then {|x⟩ : x ∈ G} is a tight frame in H.
In fact, more generally

dimH
α

∑
x,y∈G

|x⟩⟨y| = Î , (2)

where α = Tr
(∑

|x⟩⟨y|
)
.

2. The set {ρ(x) = |ρ(x)⟩ : x ∈ G} is a tight frame on B(H), where ⟨Â|B̂⟩ = Tr(Â∗B̂)

and B(H) is the space of all linear operators on H. Indeed,(
dimH
|G|

)2∑
x,y

|ρ(x)⟩⟨ρ(y)| = Î .

Proof. The proof is a standard Schur Lemma argument [38, 40]. If Ŝ =
∑
x,y∈G |x⟩⟨y|

we have that ρ(z)Ŝ|u⟩ =
∑
x,y |zx⟩⟨z−1zy|u⟩ =

∑
x,y |zx⟩⟨zy|ρ(z)u⟩ = Ŝρ(z)|u⟩. Thus,

ρ(z)Ŝ = Ŝρ(z) for any z ∈ G. By Schur Lemma, this implies the the operator Ŝ is a

multiple of the identity operator on H: Ŝ = cÎ. Taking the trace of both sides gives the

constant c = TrŜ
dimH . The homomorphism property was used in ρ(z)|x⟩ = |zx⟩.

For the second assertion, the Schur Lemma again applies, so that
∑
x,y∈G |ρ(x)⟩⟨ρ(y)| =

cI. Taking the trace of both sides give∑
1≤k,l≤dimH

∑
x,y∈G

⟨Ekl|ρ(x)⟩⟨ρ(y)|Ekl⟩,

where ⟨Ekl|ρ(x)⟩ = Tr(E∗
kρ(x)) = akl(x), Ekl being the matrix consisting of 1 at the (k, l)

entry and zero elsewhere. We then obtain, using properties of matrix elements of UIRs,∑
x,y

∑
k,l akl(x)akl(y

−1) = cdimH, which gives c =
∑
x,y

|G|
(dimH)2 δx,y−1 = ( |G|

dimH )2.

Due to the equation |G| = d21 + · · · d2r, where |G| denotes the cardinality of G, di is
the dimension of the ith UIR and r is the total number of inequivalent UIRs (equal to the
number of conjugacy classes of G), the families {|x⟩ : x ∈ G} and {|ρ(x)⟩ = ρ(x)I : x ∈ G}
of coherent states far exceeds the dimension of H, that is, we obtain a resolution of the
identity without the use of orthonormal bases.

A limiting case [24]. For the group Zn, irreducible representations χk : G −→ C×, χk(l) =
e2πikl/n are considered as rotation matrices

ak =

(
cos(2πi/n) − sin(2πi/n)
sin(2πi/n) cos(2πi/n)

)k
.

A frame consisting of l elements {|k, l⟩ = akl|u⟩ : l = 0, . . . , n − 1} is formed on R2, where

|u⟩ =
(
cos θ0
sin θ0

)
. Then

Î =
2

n

n−1∑
l=0

|k, l⟩⟨k, l|
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goes to

Î =
1

π

∫ 2π

0

|θ⟩⟨θ| dθ = 1

π

∫ 2π

0

dθ

(
cos2 θ cos θ sin θ

cos θ sin θ cos2 θ

)
for the choice θ0 = 0 in the limit n→ ∞ [24].

The rotation group. Consider again the compact group G = SO(3). Recall that for each
odd dimension 2n + 1, there is a UIR on Hn

∼= C2n+1. Choose a spanning set of 2n + 1
by 2n + 1 elements, say, an orthonormal basis of 2n + 1 elements repeated 2n + 1 times,
{|enst⟩}. Construct |x⟩ ∈ Hn by G = SO(3) ∋ x 7→ |x⟩ =

∑
1≤s,t≤2n+1 a

n
st(x)|enst⟩, where anst

are matrix elements of the nth UIR. Using the normalized Haar integral on the group and
orthogonality properties of matrix elements [38],∫

|x⟩⟨x|dµ(x) =
∑
st,ij

[∫
anst(x)a

n
ji(x) dµ(x)

]
|enst⟩⟨enji|

=
2n+ 1

dn

∑
st

|enst⟩⟨enst|

= Î ,

since the dimension dn = 2n+1. This gives a family of coherent states on C2n+1 parametrized
by G = SO(3). This example is a direct application of a more general construction [7] than
what is considered in this paper. It is similar to the limiting case above, where a continuous
family of coherent states is available for finite-dimensional space, but here we obtain them
for all the representation spaces.

In the next section, we present further examples of coherent states arising from UIRs of
groups, and point out their role in quantum mechanics and signal analysis.

5 Phase Space Quantum Mechanics

The phase space representation of a quantum system is a formulation relying on phase
space functions instead of on Hilbert space and linear operators on the Hilbert space. In
the correspondence Â ↔ fÂ, the product of quantum operators Â ◦ B̂ gives rise to the
relation fÂ◦B̂ = fÂ ⋆ fB̂ . As long as the correspondence is one-to-one, which is the case
for square integrable functions and Hilbert-Schmidt operators, this relation is well-defined,
and all C∗−algebra properties of operators are transferred to the space of phase space func-
tions under the operation of star-product ⋆ : (f, g) 7→ f ⋆ g. This gives an autonomous and
equivalent formulation of quantum mechanics in terms of classical phase space functions. In
general, the correspondence is of the form Â↔ fÂ = f0 + ℏf1 + ℏ2f2 + ℏ3f3 + · · · [4, 6, 18]
so that one is lead to the conclusion that quantum mechanics is a deformation of classical
mechanics. The classical limit is obtained by letting ℏ → 0 [6, 9, 18]. Furthermore, the com-

mutator bracket [Â, B̂] goes to [fÂ, fB̂ ]⋆ =
1

2iℏ (fÂ⋆fB̂−fB̂⋆fÂ) so that as ℏ → 0 the classical
limit is the classical Poisson bracket {fÂ, fB̂}. It is the authors’ belief that the classical-
to-quantum correspondence is best analyzed through phase space quantum mechanics, also
called deformation quantization [4, 6, 18, 39, 46]. This one-to-one correspondence may be
implemented using the Weyl-Wigner correspondence to be discussed next.

For purposes of illustrating the main ideas, consider a one-particle system where the
system Hilbert space isH = L2(R). For the simplest operator given by the projection |ψ⟩⟨φ| :
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H −→ H, the phase space function corresponding to it in the Weyl-Wigner formalism is
given by the Wigner transform (ψ,φ) 7→Wψ,φ, where

Wψ,φ(q, p) =
1

2πℏ

∫ ∞

−∞
e−

i
ℏpyψ(q + y/2)φ(q − y/2)dy

=
1

2πℏ

∫ ∞

−∞
e−

i
ℏpy⟨q + y/2|ψ⟩⟨φ|q − y/2⟩dy.

In general, for Hilbert-Schmidt operators Â, which are limits of sequences of finite linear
combinations of projections |ψ⟩⟨φ|, the Wigner distribution function is

WÂ(q, p) =
1

2πℏ

∫ ∞

−∞
e−

i
ℏpy⟨q − y/2|Â|q + y/2⟩dy.

The original proposal of E. Wigner in 1932 [43] is

Wψ(q, p) =Wψ,ψ(q, p) =
1

2πℏ

∫ ∞

−∞
e−

i
ℏpyψ(q + y/2)ψ(q − y/2)dy,

in his investigation of thermodynamic equilibrium at low temperature, where quantum ef-
fects are important. The Wigner function Wψ(q, p) has many important and useful proper-
ties which makes it a more than viable representation for the quantum state ψ [12, 21, 44]. If
||ψ|| = 1, which is the condition for being a quantum state, then

∫∫
Wψ(q, p)dqdp = 1. The

marginality properties hold
∫∞
−∞Wψ(q, p)dp = |ψ(q)|2,

∫∞
−∞Wψ(q, p)dq = |ψ̂(p)|2 as well as

some covariance property, which says the “probabilities” are preserved under translation.
The Wigner function is not a true probability distribution since it may take negative values
[20, 27]. The Weyl transform σ(q, p) 7→ Wσ which maps phase space functions to Hilbert-
Schmidt operators may be obtained as the unique linear operator for which the following
fundamental formula is true: ⟨ψ|Wσφ⟩ =

∫∫
R2 σ(q, p)Wψ,φ(q, p)dqdp [44].

There is therefore a one-to-one correspondence σ 7→ Wσ so that one may define the
so-called star-product of phase space functions by

σ1 ⋆ σ2 = W−1(Wσ1 ◦Wσ2).

Most important for us is the following relation involving the Wigner function, called Moyal’s
identity ∫∫

Wψ(q, p)Wφ(q, p)dqdp = |⟨ψ|φ⟩|2.

To see why the Moyal formula is important, we look again at unitary irreducible group
representations in the following subsections.

5.1 Coherent States and the Heisenberg group

The Heisenberg group G = H3 has the underlying space R3 = {(q, p, t)}. The group
operation is given by

(q1, p1, t1) · (q2, p2, t2) = (q1 + q2, p1 + p2, t1 + t2 +
1

2
(q1p2 − q2p1)).
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Associate to (q, p, t) the matrix m(q, p, t) =

0 q t
0 0 p
0 0 0

 so that

expm(q1, p1, t1) expm(q2, p2, t2) = expm(q1 + q2, p1 + p2, t1 + t2 +
1

2
(q1p2 − q2p1)).

This multiplication of matrices gives us the group operation. Here the exponential of a

matrix is the usual one: eA = I +A+ A2

2! + A3

3! + · · · .
The UIRs of H3 are all equivalent to the Schrödinger representation

ρ : H3 −→ U(L2(R)), [ρ(q, p, t)f ](x) = eit+
i
2 qp+iqxf(x+ p).

In terms of infinitesimal operators of H3 (that is, the generators of the Lie algebra of

H3), Î , Q̂, P̂ , where [Q̂, P̂ ] = iÎ, the Schrödinger representation may be written ρ(q, p, t) =

ei(tÎ+qQ̂+pP̂ ). Restricting to Hred = R2 × (R/2πZ) and then extending to an algebra rep-
resentation to L1(Hred) we obtain ρ̃(q, p, 0)F =

∫
R2 F (q, p)ρ(q, p) dqdp : L2(R) −→ L2(R).

This is an irreducible unitary representation of the algebra L1(R2) [20]. This is all stan-
dard procedure, and we mention it for the sake of completeness. The construction is a step
away from the Weyl quantization, already encountered above, and given by F 7→ WF =
ρ̃(q, p, 0) ◦ (FF ) =

∫
R2(FF )(x, ξ)ρ(x, ξ)dxdξ : L2(R) −→ L2(R). Here, FF is the Fourier

transform of the phase space function F [42].
On the other hand, the Wigner function corresponding to the state ψ ∈ L2(R) may

be given, like Weyl quantization, in terms of the Schrödinger representation of H3. It is a
Fourier transform Wψ,φ(q, p) = F⟨ψ|ρ(q, p)φ⟩. The Moyal identity is then given by

⟨ψ|ϕ⟩⟨φ|φ⟩ =
∫
R2

⟨ψ|ρ(q, p)φ⟩⟨ρ(q, p)φ|ϕ⟩dqdp,

by using the Plancherel identity ||f || = ||f̂ ||. If φ is a fixed unit vector, we obtain ⟨ψ|ϕ⟩ =∫
R2⟨ψ|ρ(q, p)φ⟩⟨ρ(q, p)φ|ϕ⟩dqdp, which leads to the most well known resolution of identity
[24, 44]

IL2(R) =

∫
R2

|ρ(q, p)φ⟩⟨ρ(q, p)φ|dqdp.

5.2 Time-Frequency Analysis and the Heisenberg Group

Suppressing Planck’s constant h one obtains the main tool of time-frequency analysis.
Let f, g ∈ L2(R), where g ̸= 0 is a fixed window function. The short-time Fourier transform
of f with respect to g is defined by (Vgf)(x, ω) =

∫∞
−∞ f(t)g(t− x)e−2πitωdt. In terms of the

UIR of the Heisenberg group,

⟨f |ρ(x, ω)g⟩ = eπixωVgf(x, ω).

Due to the simple exponential factor eπixω, the Moyal identity holds also for Vg. Thus, the
resolution of identity implies the Moyal identity for the Fourier-Wigner transform, and in
fact, the apparently stronger signal recovery formula is true:

f =
1

||g||2

∫
R2

Vgf(x, ω)e
−πixωρ(x, ω)gdxdω.

See [25] for more details on time-frequency analysis.
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5.3 Ladder Operators and the Harmonic Oscillator Coherent States

In (1), the harmonic oscillator coherent states |z⟩ were introduced, and their important
characteristic properties were listed. This family of coherent states is obtained as an orbit
of the Schrödinger representation. It is best studied in terms of the ladder operators: the
annihilation and creation operators, introduced next. Let â = 1√

2
(Q̂+iP̂ ), â† = 1√

2
(Q̂−iP̂ )

and z = q + ip ∈ C. Then
|z⟩ = ei(zâ

†−zâ)|0⟩, â|0⟩ = 0.

That is, the harmonic oscillator coherent states are elements in the orbit {|z⟩ = ρ(q,−p)|0⟩ :
(q,−p) ∈ R2}. The unique normalized solution |0⟩ to the differential equation â|0⟩ = 0

is the harmonic oscillator ground state ⟨x|0⟩ = 1
4√2π

e−x
2/2. In [1, 2, 5, 10], the study of

the harmonic oscillator coherent states was fully developed mathematically. In [5], the
development is in terms of what is at present called reproducing kernel Hilbert spaces in
general, and Bargmann space in particular. In the papers [1, 2, 10, 41] coherent states were
used in the quantization of the electromagnetic field, with a view towards applications to
quantum optics. In the latter papers, the fact that the problem of quantum mechanical
measurement was recognized to be intimately related to phase space distributions led to
deep mathematical and physical insights. For instance, the P−distribution or Glauber-
Sudarshan distribution is what corresponds to coherent state quantization, which in turn
requires the resolution of identity.

5.4 Coherent states, the Affine group, and the Wavelet transform

In this subsection, we present some general definitions regarding square integrable rep-
resentations of groups and give the most important example of wavelet analysis. The idea
is due to Duflo-Moore [20, 21] and the connection with coherent states was due to Berezin,
Perelomov, and Gilmore. It is a natural development from the considerations in (5.1,5.2,5.3)
that lead to the idea of using the Real Affine group G = Aff(R) in the same vein and us-
ing it in quantum mechanics, due to Klauder and Aslaksen [29], and for wavelets, due to
Daubechies, Grossmann, Morlet and Paul [15, 26]. It is where we take off towards the ap-
plications in the last section. It is in [26] that square integrable representations were used
as the basis of generalized wavelet analysis, while in [15], the analogous consideration was
done for a discrete set of vectors in Hilbert space, where the setting is in terms of the more
general concept of frames [3, 35].

Definition 5.1. Let T : G −→ U(H) be a unitary irreducible representation of a group G

in the Hilbert H. T is called square-integrable if there exists a vector φ ∈ H, φ ̸= 0 such

that cφ =
∫
G
|⟨φ|T (x)φ⟩|2dµ(x) <∞. The vector φ is called an admissible vector for T.

The orthogonality relation for square-integrable representations is the Moyal identity:∫
G
⟨ψ1|T (x)φ1⟩⟨ψ2|T (x)φ2⟩dµ(x) = λ⟨ψ1|ψ2⟩⟨φ2|φ1⟩ for some complex number λ depend-

ing only on T , in the case of the unimodular groups such as the Heisenberg group. For
nonunimodular groups, such as the affine group, the Moyal identity has the form∫

G

⟨ψ1|T (x)φ1⟩⟨ψ2|T (x)φ2⟩dµ(x) = λ⟨ψ1|ψ2⟩⟨Cφ2|Cφ1⟩,

for some unique positive self-adjoint operator C on H, called the Duflo-Moore operator.
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Thus, if we fix φ1 = φ2, and choosing it so that ⟨Cφ1|Cφ1⟩ = 1
λ , we get

IH =

∫
G

|T (x)φ⟩⟨T (x)φ|dµ(x) =
∫
G

|x⟩⟨x|dµ(x),

the resolution of identity in terms of coherent states |x⟩ = |T (x)φ⟩.
For a fixed ”ground state” φ, the embedding H ∋ ψ 7→ ψ̃ = Wψ ∈ L2(G), ψ̃(x) =

⟨ψ|T (x)φ⟩ is called the wavelet transform. The Moyal identity states that the wavelet
transform is unitary ⟨Wψ1|Wψ2⟩ = ⟨ψ1|ψ2⟩ as a mapping W : H −→ RanW onto the
range of W in L2(G).

Let us now consider the real affine group G = Aff(R), which underpins the original
wavelet transform. This group consists of elements (a, b) ∈ R+ × R with group operation

(a1, b1) · (a2, b2) = (a1a2, a1b2 + a2). Under the association (a, b) 7→
(
a b
0 1

)
the group

operation is simply the usual matrix multiplication(
a1 b1
0 1

)(
a2 b2
0 1

)
=

(
a1a2 a1b2 + b1
0 1

)
.

The standard action on R =

{
x↔

(
x
1

)}
is by affine transformations: (a, b) · x = ax+ b.

The UIRs of Aff(R) are given by ρ± : Aff(R) −→ U(H+) on the Hardy spaces H+ =

{f ∈ L2(R) : supp f̂ ⊂ [0,∞)},H− = {ψ ∈ L2(R) : supp ψ̂ ⊂ (−∞, 0]}, respectively, and
given by the same formula

[ρ±(a, b)ψ](x) =
1√
a
ψ

(
x− b

a

)
.

The wavelet transform is given by Wψ(f) = ⟨f |ρ(a, b)ψ⟩ = 1√
a

∫∞
−∞ f(x)ψ

(
x−b
a

)
dx for an

admissible vector ψ, that is,
∫∞
−∞

|̂ψ(x)|2
|x| dx <∞ and the Moyal formula gives the resolution

of identity

I =

∫
Aff(R)

|ρ(a, b)ψ⟩⟨ρ(a, b)ψ|dadb
a2

.

This implies the signal recovery formula |f⟩ =
∫ +∞
0

∫ +∞
−∞ |ρ(a, b)ψ⟩⟨ρ(a, b)ψ|f⟩dadba2 . The

wavelet analysis of signals based on the affine group is much preferred by scientists and
engineers than the short-time Fourier transform due to the fact that wavelet decomposition
models real-life signals better. One way, among many, that wavelet decomposition is better is
due to the fact that signals are cut up into different frequency components whose resolutions
are matched to their scale. That is, high-frequency components correspond to short-time
localization while low-frequency portions of the signal are broader in their localization.
Thus, the wavelet transform is able to zoom in better on high-frequency parts of signals
[13]. Discretization of the signal recovery formula leads to multiresolution analysis, where
it is standard to employ the Haar wavelet, as it provides the simplest orthonormal wavelet
basis [30].

6 Applications of the Resolution of Identity

In this section, we give several applications of coherent states to quantization. The
quantization of angle is via coherent states arising from unitary operators representing the
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discrete cylinder G = Z × S1. This quantization gives a viable scheme for functions of
angle, and is much simpler than those in [32, 33]. Although G is a group, the operators
do not form a representation [45]. They are however a direct discrete analogue of the
Schrödinger representation. The quantization of time again arises from coherent states on
the discrete cylinder, which are direct discrete analogues of the canonical coherent states,
arising from unitary irreducible representations of G. We quantize confined time of arrival
functions [22, 23], and coherent states on the discrete cylinder, we feel, form an appropriate
phase space quantum mechanical setting for this quantization problem. Finally, localization
operators on the Euclidean motion group on the plane E(2) are constructed via coherent
states arising from the left-regular representation and an appropriate admissible vector. The
UIRs of E(2) do not admit any admissible vectors but it is possible to bypass this difficulty
via the regular representation [16, 28]. Thus, localization is now possible on the phase space
of translations and rotations, and boundedness properties for functions in Lp, p = 1, 2,+∞
are proved (see (6.3) below).

6.1 Coherent State Quantization of Angle

Definition 6.1. [3] Suppose {|x⟩ : x ∈ X} ⊂ H is a family of coherent states in the Hilbert

space H parametrized by the measure space X, that is, IH =
∫
X
|x⟩⟨x|dµ(x). If X is a

discrete measure space, the integral is replaced by a sum. The coherent state quantization

of the square-integrable function f : X −→ C is

Âf =

∫
f(x)|x⟩⟨x|dµ(x) : H −→ H.

Quantization is any procedure that assigns quantum observables to classical observables.
This is the intentionally vague definition in physics and mathematics. In signal analysis,
quantization is usually meant mapping a large set of inputs to a smaller set of outputs.
We follow the idea of Gazeau-Bergeron [7, 34] in viewing quantization as assigning labeled
observables to the functions on the label set X. This is an attractive general definition
because it can accommodate more general classical spaces such as measure spaces, in contrast
to the standard one of symplectic manifolds. Moreover, one is allowed to quantize discrete
and finite spaces, where coherent state quantization is the simplest procedure. It is precisely
the point of view of phase space representation of quantum mechanics that makes coherent
state quantization quite attractive, e.g., the P−distribution of Glauber-Sudarshan [10, 41]
and the quantization method due to Berezin [9, 8]. Coherent state quantization is also
known by the names Toeplitz quantization and anti-Wick quantization [35].

Consider the following family of unitary operators [45] ρ(n, θ) : ℓ2(Z) −→ ℓ2(Z) given by

(ρ(n, θ)F )(k) =

{
ei(k+

n
2 ))θF (k + n), n ∈ Zeven

ei(k+
n−1
2 ))θF (k + n), n ∈ Zodd

where (n, θ) ∈ G = Z× S1, F ∈ ℓ2(Z). The matrix elements are, for G ∈ ℓ2(Z)

V (F,G) = ⟨ρ(n, θ)F |G⟩ =
∑
m∈Ze

eimθF
(
m+

n

2

)
G
(
m− n

2

)
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+
∑
m∈Zo

eimθF

(
m+

n+ 1

2

)
G

(
m− n− 1

2

)

and we have the Moyal identity (see [45] for the proof)

⟨V (F1, G1)|V (F2, G2)⟩L2(Z×S1) = ⟨F1|F2⟩ℓ2(Z)⟨G1|G2⟩ℓ2(Z)

which gives the resolution of identity

Îℓ2(Z) =
1

||F ||2
∑
n

1

2π

∫ 2π

0

∣∣ρ(n, θ)F ⟩⟨ρ(n, θ)F ∣∣dθ.
The coherent quantization of the angle is then given by

ÂθG =
∑
n

1

2π

∫ π

−π
θ|ρ(n, θ)F ⟩⟨ρ(n, θ)F |G⟩dθ,

whose matrix elements are

⟨l|Âθ|k⟩ =
±4i

(k − l)

∑
n∈Z

F (l + n)F (k + n).

This gives ⟨l|Âθ|k⟩ = ±4i
k−l

∑
exp[−(l+n)2−(k+n)2

2σ2 ] for a Gaussian F and is a superposition of

Gaussians with peaks at k+l
2 . Localization at particular lattice points may be achieved by

localization operators

L̂F =
∑
n

1

2π

∫ 2π

0

θw(n)|ρ(n, θ)F ⟩⟨ρ(n, θ)F | dθ

using a weight function w(n).

6.2 Coherent State Quantization of Time

The quantization of time of arrival functions, has received focused theoretical consider-
ations in the last two decades, mainly by E. Galapon and collaborators [22, 23]. However,
among the most important conjugate pairs such as the angle-angular momentum pair, the
time-energy pair received the least attention. This is mainly due to a well-known folklore
attributed to W. Pauli, stating that there exists no self-adjoint time operator conjugate
to a semibounded Hamiltonian [22, 23]. Time has been relegated mostly as an external
parameter, a situation that cannot be long sustained due to the operator theoretic nature
of the various Heisenberg uncertainty principles involving conjugate pairs of observables.

We consider the following discrete coherent states parametrized by (ℓ, σ) ∈ Z × S1:

|(ℓ, σ)⟩ = Û(ℓ, σ)|0⟩ =
√
2

4
√
π
e−iσℓ/2eiℓθe−

(θ−σ)2

2 for a confined particle on a line segment and

the time of arrival function T (θ, nℏ) = −µ θ
nℏ , where T is a function on the phase space

(which is also a group) G = S1×Z [32, 33, 36]. The coherent state quantization arises from

the resolution of the identity Î =
∑
ℓ∈Z
∫ π
−π |(ℓ, σ)⟩⟨(ℓ, σ)|dσ and is given by

T̂ =
∑
ℓ∈Z

∫ π

−π
Ť (σ, ℓ)|(ℓ, σ)⟩⟨(ℓ, σ)|dσ,
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(T̂ ϕ)(θ) = − iµ

4
√
2ℏ

∑
ℓ,n ̸=0∈Z

(−1)ℓe−n
2/4

nℓ
e−inθϕ(θ).

The proof for the resolution of identity is a simple computation: it uses the Fourier

decomposition of the function e−
(φ−σ)2

2 η(φ), with the assumption that η ∈ L2(S1),∑
ℓ∈Z

∫ π

−π
|σ, ℓ⟩⟨σ, ℓ|η⟩dσ = C2

∑
ℓ∈Z

∫ π

−π
eiℓωe−

(ω−σ)2

2

∫ π

−π
e−iℓφe−

(φ−σ)2

2 η(φ)dφdσ

= 2πC2

∫ π

−π
e−

(ω−σ)2

2 η(ω)dσ

= 2πη(ω).

Thus it gives us ∑
ℓ∈Z

∫ π

−π
|σ, ℓ⟩⟨σ, ℓ|dσ = 2πÎH.

We have then the coherent state quantization of T :

T̂ =

∫ π

−π
Ť (σ, ℓ)|σ, ℓ⟩⟨σ, ℓ|dσ

= − iµ

2πℏ
1√
2π

∑
ℓ,n∈Z
n,ℓ̸=0

∫ π

−π

(−1)ℓe−inσ

nℓ
e−(θ−σ)2dσ

= − iµ

4
√
2ℏ

∑
ℓ,n∈Z
n,ℓ̸=0

(−1)ℓe−n
2/4

nℓ
e−inθ.

This means that for ϕ(θ) ∈ H = L2(S1) then

(T̂ ϕ)(θ) = − iµ

4
√
2ℏ

∑
ℓ,n∈Z
n,ℓ ̸=0

(−1)ℓe−n
2/4

nℓ
e−inθϕ(θ).

6.3 Localization on the Euclidean Motion Group

We now look at the construction of coherent states and localization operators on the
Euclidean motion group on the plane. The Euclidean motion group of rank two, E(2), is
defined to be the semi-direct product of the translation group, R2, and the circle group, S,
denoted by R2 ⋊ S. We also consider the group action of S on R2, given by the standard
action by rotation

σ : S → Aut(R2), σ(z) =

[
cos θ − sin θ
sin θ cos θ

]
,

where θ = argz, θ ∈ [0, 2π). The group multiplication on E(2) is given by

(x1, z1)(x2, z2) = (x1 +Rz1x2, z1z2)
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for all (x1, z1), (x2, z2) ∈ R2 ⋊ S, xi = (bi1 , bi2).

The conventional approach in the construction of coherent states for E(n) where n ≥ 2
fails because none of the unitary irreducible representations of E(n) on L2(Sn−1) are square-
integrable [28]. This means that∫

E(2)

∣∣〈φ,Usgφ〉∣∣2 dg = ∞.

We modify this conventional approach, so that, instead of using the unitary irreducible
representations of the group, we use the regular representation of E(2) on L2(R2), which
is the composition of the representations T and R̄ of the translation group, R2, and the
circle group, S, respectively. The action of the unitary representation with the function f
on L2(R2) is given by

(Ugf)(x) = (TtR̄zf)(x) = f(R−1
z (x− t))

where g ∈ E(2) parametrized by g = (t, z), t ∈ R2 and z ∈ S. Here, we have (Ttf)(x) =
f(x− b) and (R̄zf)(x) = f(R−1

z x).

Let ψα ∈ L2(R2) ∩ L2(R2) be a non-vanishing and admissible wavelet [16] defined by

ψα : x→ α

4
e−|x1|−α|x2|.

We define a function cψ, which will be the wavelet constant for the regular representation,

cψ(ω) =

∫
S

∣∣(FR̄zψα(ω)∣∣2 dz
=

α4

4π2

∫ 2π

0

dθ

(1 + ξ2)2(α2 + η2)2
<∞, (3)

where ξ = ω1 cos θ + ω2 sin θ, η = ω2 cos θ − ω1 sin θ and θ = arg z. Here, FR̄zψα is the
Fourier transform of R̄zψα given by

(FR̄θψα)(ω) =
α2

2π[1 + (ω1 cos θ + ω2 sin θ)2][α2 + (ω2 cos θ − ω1 sin θ)2]
,

for ω = (ω1, ω2) ∈ R2.

The wavelet transform [16], Wψα : L2(R2) → CR2⋊S , associated to ψα is given by

(Wψαf)(g) = ⟨Ugψα, f⟩L2(R2) = ⟨FUgψα,Ff⟩L2(R̂2) (4)

where R̂2 is the dual of R2 and CR2⋊S is a functional Hilbert space which is a subspace
of L2(E(2)). It is simply the range of Wψα in L2(E(2)). If ψ ∈ H satisfies (3) the group
representation is square-integrable and the functional Hilbert space is a closed subspace of
L2(E(2)).

Given the wavelet transform, Wψα , in (4), we derive the resolution of identity in terms
of Wψα

as follows (see Theorem 11.16 of [16])

⟨X,Y ⟩L2(R2) =

〈
1

√
cψα

Wψα
X,

1
√
cψα

Wψα
Y

〉
CR2⋊S

,
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where cψα
is a constant associated to ψα given in (3). This unitarity of the wavelet transform

is nothing but the Moyal identity and this gives the resolution of the identity formula in
E(2) on L2(R2):

IL2(R2) =
1

cψ

∫
|Wψα

⟩⟨Wψα
|dg.

Define a bounded linear operator, LF,ψα : L2(R2) → L2(R2) related to the wavelet
transform, Wψα

, by

⟨LF,ψα
X,Y ⟩L2(R2) =

1

cψα

∫
E(2)

F (g)(Wψα
X)(g)(Wψα

Y )(g)dg

=
1

cψα

∫
E(2)

F (g) ⟨Ugψα, X⟩ ⟨Y, Ugψα⟩ dg

where F ∈ L1(E(2))∪L∞(E(2)) and X,Y ∈ L2(R2). These bounded linear operators LF,ψα

are called localization operators in the group E(2). Localization operators are important in
signal analysis and have been known since the work of I. Daubechies [14] on signal analysis
and was certainly foreshadowed by the works F. A. Berezin in his work on quantization
[8, 9].
The following are some mathematical properties observed for the operators LF,ψα

[31]:

1. Let F ∈ L1(E(2)). Then LF,ψα
: L2(R2) → L2(R2) is a bounded operator and

||LF,ψα
||∗ ≤ 1

cψα

||F ||L1(E(2))||ψα||2.

To prove this first property, let F ∈ L1(E(2)). This means that
∫
E(2)

|F (g)| dg < ∞.

Then, by applying the inequalities of Hölder’s and Cauchy-Schwarz we obtain

|⟨LF,ψα
X,Y ⟩| =

∣∣∣∣∣ 1

cψα

∫
E(2)

F (g) ⟨Ugψα, X⟩ ⟨Y,Ugψα⟩ dg

∣∣∣∣∣
≤ 1

cψα

||F ||L1(E(2)). (5)

Then LF,ψα
: L2(R2) → L2(R2) is a bounded operator with

||LF,ψα
||∗ ≤ 1

cψα

||F ||L1(E(2)),

where || ||∗ denotes the operator norm.
The proofs of the other two important inequalities are similar.

2. Let F ∈ L∞(E(2)). Then LF,ψα
: L2(R2) → L2(R2) is a bounded operator and

||LF,ψα
||∗ ≤ 1

cψα

||F ||L∞(E(2))||ψα||2

3. Let F ∈ L2(E(2)). Then LF,ψα
: L2(R2) → L2(R2) is a bounded operator and

||LF,ψα
||∗ ≤ 1

cψα

||F ||L2(E(2))||ψα||2.
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7 Conclusion

In this paper, we presented several expressions for the identity operator in Hilbert space
in terms of coherent states, called the resolution of identity formula. Coherent states are very
important and useful objects in physics due to their classical-like behavior. Applications of
coherent states to quantization and localization are presented, one arising from a unitary
irreducible representation of a group, one from a family of unitary operators which are not
group representations, although the parametrization comes from a group, and one from a
unitary group representation which is not irreducible. The theory of coherent states and
the mathematical developments arising from it, such as quantization, localization and gen-
eralized wavelet transforms, are mathematically very rich, as well as accessible to advanced
students of mathematics. In this work, we broached to the local mathematical audience
the mathematical theory of coherent states, possibly as an entry and motivation to study
quantum mechanics, which is at the source of many important mathematical developments
in the previous century. One such strong motivation should be the deep connection with
unitary representations and harmonic analysis on groups.
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