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Abstract
Let Γ denote an arbitrary distance-regular graph with vertex set X and adjacency

matrix A. Fix x ∈ X and let T = T (x) denote the Terwilliger algebra Γ with respect
to x. Then A decomposes into

A = L + F + R

where L,F,R ∈ T . The quantum adjacency algebra Q = Q(x) of Γ with respect to
x is the subalgebra of T generated by L, F , R. Recently, Terwilliger and Žitnik (J.
Comb. Th. Ser. A 166: 297–314, 2019) introduced the notion of quasi-isomorphism
between T -modules and gave equivalent conditions for Q 6= T . To provide examples,
they showed Q = T in Hamming graphs and Q 6= T in bipartite dual-polar graphs. It
is interesting to know which distance-regular graphs show Q 6= T . In this paper, we
consider the Doob graph D = D(n,m) formed by the Cartesian product of n copies of
Shrikhande graph S and m copies of complete graph K4. Using Tanabe’s result (JAC
6: 173–195, 1997) on characterization of irreducible T -modules of D, we show a nec-
essary and sufficient condition for two irreducible T -modules to be quasi-isomorphic.
Moreover, we show Q 6= T in Doob graphs. This paper provides an alternative proof of
Corollary 5.7 in (JAC 54: 979–998, 2021) via quasi-isomorphism. This paper aims to
explicitly carry out the computation mentioned in Remark 5.8 in (JAC 54: 979–998,
2021
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1 Introduction
The subconstituent algebra was first introduced by Terwilliger in [30] with subsequent

papers [31] and [32]. This is a finite-dimensional and semi-simple matrix C-algebra at-
tached to a fixed vertex of a graph or an association scheme. Since its introduction, the
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subconstituent algebra became a useful tool in the study of combinatorial and algebraic
structures of graphs (see e.g., [7], [8]) as well as association schemes (see e.g., [29], [23],
[13], [3]). Later on, the subconstituent algebra became known as Terwilliger algebra (see
[3, 4, 6, 7, 8, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 26, 27, 28, 34] for some recent works
on the area). Independent of the notion of Terwilliger algebra, Hora and Obata introduced
the quantum adjacency algebra in [11]. This algebra became useful in describing limiting
spectral distributions of infinite sequences of graphs growing in terms of order and size.

Since the quantum adjacency algebra Q of a graph is generated by matrices that are
contained in the Terwilliger algebra T , it is interesting to determine which graph shows
Q 6= T . If the graph is distance-regular (see Section 2 for definition), then the above prob-
lem translates to existence of a pair of quasi-isomorphic modules that are non-isomorphic as
T -modules. Recently, Terwilliger and Žitnik [33] introduced the notion of quasi-isomorphism
between T -modules and gave equivalent conditions for Q 6= T . To provide examples, they
showed Q = T in Hamming graphs and Q 6= T in bipartite dual-polar graphs.

Doob graphs belong to the family of distance-regular graphs and are formed by taking
the Cartesian product of n copies of Shrikhande graph S and m copies of complete graph K4

on four vertices. In [29], Tanabe studied the Terwilliger algebras of Doob graphs and gave
a detailed characterization of irreducible modules based on four parameters – the integers
v, d, p, t where v is the endpoint and d + p is the diameter. He proved that two irreducible
T -modules are isomorphic if and only if these modules coincide on the four parameters [29,
Proposition 3]. In this paper, we show that two irreducible T -modules are quasi-isomorphic
if and only if these modules coincide on these parameters except possibly the endpoint. This
provides an alternative proof of [24, Corollary 5.7] via quasi-isomorphism. Consequently,
there exists a pair of quasi-isomorphic modules that are not isomorphic as T -modules and
thus, Q 6= T in Doob graphs. This paper aims to carry out the computation mentioned in
[24, Remark 5.8].

The paper is arranged as follows: In Section 2, we review some concepts on distance-
regular graphs and related algebras. In Section 3, we mention results relating the Terwilliger
algebras and the quantum adjacency algebras as well as their irreducible modules. We
also review results about quasi-isomorphism in T -modules. In Section 4, we recall some
properties of the Doob graphs and the characterization of irreducible modules. In Section
5, we prove the main result.

2 Preliminaries
In this section, we briefly review some basic concepts concerning distance-regular graphs

and related algebras. For more information, see [1, 2, 5, 9, 22, 30].

Let X denote a nonempty finite set and let V = CX denote the C-vector space of column
vectors with complex entries whose coordinates are indexed by X. For x ∈ X, define the
vector x̂ ∈ V such that

y-coordinate of x̂ =

{
1 if x = y,
0 if x 6= y,

(y ∈ X).

Note that {x̂ | x ∈ X} is an orthonormal basis for V with respect to the inner product
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〈u, v〉 = utv̄ where t and − denote transpose and complex conjugate, respectively. For
convenience, let † denote conjugate-transpose. Let End(V ) denote the set of all linear
transformations from V to V . We identify End(V ) with the C-algebra of complex matrices
with rows and columns indexed by X. Note that 〈Bu, v〉 = 〈u,B†v〉 for u, v ∈ V and for
B ∈ End(V ).

Let Γ = (X,R) denote a finite, undirected, simple connected graph with vertex set X
and edge set R. The distance ∂(a, b) from a to b is the length of a shortest path from a to
b. By the diameter of Γ, we mean the scalar

s := max{∂(a, b) | a, b ∈ X}.

We say Γ is distance-regular if for x, y ∈ X such that ∂(x, y) = h the scalar

phij := |{z ∈ X | ∂(x, z) = i and ∂(z, y) = j}| (1)

is independent of the choice of x and y and depends only on h, i, j (0 ≤ h, i, j ≤ s). The
scalars (1) are called the intersection numbers of Γ. From here on, we assume Γ is distance
regular with diameter s ≥ 1.

We recall the Bose–Mesner algebra of Γ. For i ∈ {0, 1, . . . , s}, define Ai ∈ End(V ) such
that

(Ai)xy =

{
1 if ∂(x, y) = i,
0 if ∂(x, y) 6= i,

(x, y ∈ X). (2)

The matrices (2) are the distance matrices of Γ. We abbreviate A := A1 and call A the
adjacency matrix of Γ. Observe that

(i) A0 = I, the identity matrix;

(ii)
∑s
h=0Ah = J , the all ones matrix;

(iii) Ati = Ai (0 ≤ i ≤ s);

(iv) Āi = Ai (0 ≤ i ≤ s);

(v) AiAj =
∑s
h=0 p

h
ijAh (0 ≤ i, j ≤ s).

Since phij = phji, we have AiAj = AjAi for all i, j (0 ≤ i, j ≤ s). Note that {A0, . . . , As} is
linearly independent and forms a basis for the commutative subalgebra M of End(V ). We
call M the Bose–Mesner algebra of Γ. By [1, p. 190], M is generated by A. By [1, pp. 59,
64], M has a second basis E0, E1, . . . , Es such that

E0 + E1 + · · ·+ Es = I,

E0 = |X|−1J,
Eti = Ei (0 ≤ i ≤ s),
Ei = Ei (0 ≤ i ≤ s),

EiEj = δijEi (0 ≤ i, j ≤ s).

E0, E1, . . . , Es are called the primitive idempotents of Γ. Moreover, there exist scalars
θ0, θ1, . . . , θs such that

A = θ0E0 + θ1E1 + · · ·+ θsEs.
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Observe that AEi = θiEi (0 ≤ i ≤ s). The scalars {θ0, θ1, . . . , θs} are real and mutually
distinct. We call θi the eigenvalue of A associated with Ei. The standard module V de-
composes into an orthogonal direct sum V = E0V + E1V + · · · + EsV where EiV is the
eigenspace of A associated with θi. For convenience, Ei := 0 whenever i < 0 or i > s.

We recall the Terwilliger algebra of Γ. Fix a base vertex x ∈ X. For i ∈ {0, 1, . . . , s}, we
define the diagonal matrix E∗i = E∗i (x) in End(V ) such that

(E∗i )yy = (Ai)xy (y ∈ X).

E∗0 , E
∗
1 , . . . , E

∗
D are called the dual primitive idempotents of Γ. For convenience, E∗i := 0

whenever i < 0 or i > s. Observe that

(i)
∑s
h=0E

∗
h = I;

(ii) E∗ti = E∗i (0 ≤ i ≤ s);

(iii) Ē∗i = E∗i (0 ≤ i ≤ s);

(iv) E∗i E∗j = δijE
∗
j (0 ≤ i, j ≤ s).

Note that {E∗0 , . . . , E∗s} forms a basis for a commutative subalgebraM∗ = M∗(x) of End(V ).
We call M∗ the dual Bose–Mesner algebra of Γ with respect to x. Let T = T (x) denote
the subalgebra of End(V ) generated by M and M∗. We call T the Terwilliger algebra of Γ
with respect to x. Since M is generated by A and M∗ is spanned by {E∗0 , E∗1 , . . . , E∗s}, T is
generated by {A,E∗0 , E∗1 , . . . , E∗s}.

We now recall T -modules. Let W denote a subspace of V . For B ∈ End(V ), define
BW = {Bw : w ∈W}. We say W is B-invariant whenever BW ⊆ W . We say W is a T -
module ifW is B-invariant for all B ∈ T . Since T is generated by {A,E∗0 , . . . , E∗s},W is a T -
module ifW is B-invariant for each B ∈ {A,E∗0 , . . . , E∗s}. We callW an irreducible T -module
if W 6= 0 and W contains no other T -modules other than 0 and itself. If W is a T -module,
then so is its orthogonal complement W⊥. In particular, if W is a T -module containing
another T -module W ′, then W ′⊥ ∩ W is also a T -module and W = W ′ ⊕

(
W ′⊥ ∩W

)
.

Hence, any nonzero T -module such as V can be decomposed into an orthogonal direct sum
of irreducible T -modules. By a T -module isomorphism, we mean a vector space isomorphism
σ from W onto another T -module W ′ such that σ(Bw) − Bσ(w) = 0 for all B ∈ T and
w ∈ W . If σ exists, then we call W and W ′ isomorphic T -modules. Suppose W is an
irreducible T -module. By the support of W , we mean the set

supp(W ) = {i ∈ Z : E∗iW 6= 0}.

We call | supp(W )| − 1 and min(supp(W )) the diameter and endpoint of W , respectively.
By the dual support of W , we mean the set

dsupp(W ) = {i ∈ Z : EiW 6= 0}.

We define the dual diameter and dual endpoint of W analogously. If v (resp. µ) is the
endpoint (resp. dual endpoint) of W , then

W =
∑∞
k=0E

∗
v+kW

W =
∑∞
k=0Eµ+kW
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are orthogonal direct sum decompositions of W . We say W is thin (resp. dual thin) when-
ever dimE∗iW ≤ 1 (resp. dimEiW ≤ 1) for all i ∈ Z.

We recall the quantum adjacency algebra of Γ. Define the matrices L = L(x), F = F (x),
and R = R(x) by

L =
∑s
i=0E

∗
i−1AE

∗
i , F =

∑s
i=0E

∗
i AE

∗
i , R =

∑s
i=0E

∗
i+1AE

∗
i . (3)

We call L, F , and R the lowering, flat, and raising matrices, respectively. Since T is
generated by {A,E∗0 , . . . , E∗s}, we have L,F,R ∈ T . Let Q = Q(x) denote the subalgebra
of T generated by L,F,R. We call Q the quantum adjacency algebra of Γ with respect to
x. Since E∗jAE∗k = 0 whenever |j − k| > 1, we have

A = (
∑s
i=0E

∗
i )A (

∑s
h=0E

∗
h)

=
∑s
i=0E

∗
i−1AE

∗
i +

∑s
i=0E

∗
i AE

∗
i +

∑s
i=0E

∗
i+1AE

∗
i

= L+ F +R.

Observe that
L̄ = L, F̄ = F, R̄ = R, F t = F, Rt = L. (4)

By (4), Q is closed under † and is semi-simple. Moreover,

LE∗i V ⊆ E∗i−1V, FE∗i V ⊆ E∗i V, and RE∗i V ⊆ E∗i+1V. (5)

We define Q-modules, irreducible Q-modules, and Q-module isomorphism analogous to that
of T -modules, irreducible T -modules, and T -module isomorphism, respectively. Note that
each T -module turns into a Q-module by restricting the action of T to Q. In particular,
each irreducible T -module is irreducible as Q-module [33, Proposition 6.3].

3 Irreducible T -modules and Q-modules

Since every T -module turns into a Q-module by restricting the action of T to Q, every
pair of isomorphic T -modules must be a pair of isomorphic Q-modules. In some distance-
regular graphs, it is possible to have a pair of isomorphic Q-modules that are non-isomorphic
as T -modules. In this section, we look into conditions equivalent to existence of non-
isomorphic T -modules that are isomorphic as Q-modules. Basically, all results in this section
are taken from Terwilliger and Žitnik [33]. Throughout this section, we assume the follow-
ing: Let Γ denote a distance-regular with diameter s and adjacency matrix A. Let V denote
the standard module of Γ. For a base vertex x ∈ X, write T = T (x), Q = Q(x), and
E∗i = E∗i (x) (0 ≤ i ≤ s).

Lemma 3.1. [33, Proposition 6.3] With reference to above assumption, every irreducible

T -module is an irreducible Q-module.

Lemma 3.2. [33, Proposition 7.5] With reference to above assumption, let W and W ′

denote irreducible T -modules. If W and W ′ are isomorphic as Q-modules, then they have

the same diameter.
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Definition 3.3. [33, Definition 8.1] Let W and W ′ denote irreducible T -modules with

endpoints µ and µ′, respectively. Let γ = µ′ − µ. By a quasi-isomorphism of T -modules

from W to W ′ we mean a C-linear bijection σ : W →W ′ such that on W ,

σL = Lσ, σF = Fσ, σR = Rσ, (6)

and

σE∗i = E∗i+γσ ∀i ∈ Z. (7)

If a quasi-isomorphism exists between W and W ′, then we call them quasi-isomorphic T -

modules.

Lemma 3.4. [33, Corollary 8.5] With reference to above assumption, let W and W ′ denote

irreducible T -modules. Then the following are equivalent:

(i) the T -modules W and W ′ are quasi-isomorphic and have the same endpoint;

(ii) the T -modules W and W ′ are isomorphic.

Lemma 3.5. [33, Corollary 8.7] With reference to above assumption, let W and W ′ denote

irreducible T -modules. Then the following are equivalent:

(i) the Q-modules W and W ′ are isomorphic;

(ii) the T -modules W and W ′ are quasi-isomorphic.

It turns out that a pair of quasi-isomorphic irreducible T -modules constitutes a pair of
isomorphic irreducible Q-modules. However, some quasi-isomorphic irreducible T -modules
are isomorphic T -modules. To prove that Q is properly contained in T , it suffices to show
the existence of a pair of non-isomorphic irreducible T -modules that are quasi-isomorphic.

Proposition 3.6. [33, Theorem 9.1] The following are equivalent:

(i) Q 6= T ;

(ii) Q is properly contained in T ;

(iii) there exists a pair of non-isomorphic irreducible T -modules that are isomorphic as

Q-modules;

(iv) there exists a pair of quasi-isomorphic irreducible T -modules that have different end-

points.
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4 Doob graphs and their Terwilliger algebras
In this section, we recall Doob graphs and their properties. To begin, consider the graph

S = (X ′, R′) such thatX ′ consists of all cyclic permutations of the binary codewords 000000,
110000, 010111, and 011011 and R′ is given by

R′ = {(a, b) ∈ X ′ ×X ′ : a and b differ in exactly two coordinates}.

We call S the Shrikhande graph. On the other hand, consider the graph K4 = (X ′′, R′′)
such that |X ′′| = 4 and R′′ = {(a, b) | a, b ∈ X ′′ and a 6= b}. We call K4 the complete graph
on four vertices. Observe that S has diameter 2 and K4 has diameter 1. Let A′i (resp. A′′i )
denote the ith distance matrix of S (resp. K4). For fixed integers n ≥ 1 and m ≥ 0, let
D = D(n,m) denote the graph formed by the Cartesian product of n copies of S and m
copies of K4. We call D the Doob graph. Observe that D has diameter 2n+m. The distance
matrices of D are given by

Ai =
∑
A′i1 ⊗ · · · ⊗A

′
in
⊗A′′j1 ⊗ · · · ⊗A

′′
jm

(i ∈ {0, 1, . . . , 2n+m}) (8)

where the sum ranges to all i1, i2, . . . , in ∈ {0, 1, 2} and j1, j2, . . . , jm ∈ {0, 1} such that
i1 + · · ·+ in + j1 + · · ·+ jm = i and that ⊗ denotes Kronecker product of matrices. Similar
equations hold for the primitive idempotents.

For any two vertices x, y of D, there exists an automorphism ϕ ∈ Aut(D) such that
ϕ(x) = y. Hence, the Terwilliger algebras T (x) and T (y) are isomorphic [29, p. 176]. Let
x′ and x′′ denote respective base vertices of S and K4. Then we can pick

x = (x′, x′, . . . , x′︸ ︷︷ ︸
n copies

, x′′, x′′, . . . , x′′︸ ︷︷ ︸
m copies

) (9)

as base vertex so the dual primitive idempotents of D with respect to x are given by

E∗i =
∑
E∗′i1 ⊗ · · · ⊗ E

∗′
in
⊗ E∗′′j1 ⊗ · · · ⊗ E

∗′′
jm

(i ∈ {0, 1, . . . , 2n+m}) (10)

where the sum ranges to all i1, i2, . . . , in ∈ {0, 1, 2} and j1, j2, . . . , jm ∈ {0, 1} such that
i1 + · · · + in + j1 + · · · + jm = i. To prove our main results, we shall use the assumption
below.

Assumption 4.1. For fixed integers n ≥ 1 and m ≥ 0, we consider the Doob graph

D = D(n,m) with adjacency matrix A and standard module V . Let x be as in (9) and

write E∗i = E∗i (x) for the dual primitive idempotents of D. Let L = L(x), F = F (x), and

R = R(x) denote respectively the lowering, flat, and raising matrices. Finally, let T = T (x)

(resp. Q = Q(x)) denote the Terwilliger (resp. quantum adjacency) algebra of D.

Note that V decomposes into a direct sum of irreducible T -modules. Tanabe [29] gave a
detailed characterization of these irreducible modules.

Proposition 4.2. [29, Proposition 3] With reference to Assumption 4.1, consider integers

v, d, p, t such that v, d, p ≥ 0. Let W = W (n,m; v, d, p, t) denote a subspace of V with basis

{wij ∈ E∗v+i+jW : 0 ≤ i ≤ d, 0 ≤ j ≤ p} satisfying

Awij = 3(d− i+ 1)wi−1,j + (p− j + 1)wi,j−1 + (t+ 2i− 2j)wij
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+ 3(j + 1)wi,j+1 + (i+ 1)wi+1,j (11)

such that wkl := 0 if k /∈ {0, 1, . . . , d} or l /∈ {0, 1, . . . , p}. If W 6= 0, then each of statements

(i)–(v) below holds:

(i) W is an irreducible T -module with endpoint v and diameter d+ p.

(ii) W is thin if and only if dp = 0.

(iii)

dim E∗v+kW =


k + 1 if 0 ≤ k ≤ min{d, p},
min{d, p}+ 1 if min{d, p} < k < max{d, p},
d+ p+ 1− k if max{d, p} < k ≤ d+ p.

(iv) If µ is the dual-endpoint of W , then

µ = 1
4 [3(2n+m)− t− 3d− p],

dim Eµ+kW = dim E∗v+kW.

(v) For W ′ := W (n,m; v′, d′, p′, t′), W and W ′ are isomorphic T -modules if and only if

(v, d, p, t) = (v′, d′, p′, t′).

Proposition 4.3. [29, Proposition 4] If W is an irreducible T -module, then it is isomorphic

to W (n,m; v, d, p, t) for some integers v, d, p, t.

By Proposition 4.2, two irreducible T -modules are isomorphic if and only if they coincide
on the four parameters v, d, p, t. We end this section with explicit actions of the dual
primitive idempotents and the lowering, raising, and flat matrices on the irreducible modules.

Lemma 4.4. Let W = W (n,m; v, d, p, t) denote an irreducible T -module with endpoint v,

diameter d+p, and basis {wij ∈ E∗v+i+jW : 0 ≤ i ≤ d, 0 ≤ j ≤ p} satisfying the conditions

of Proposition 4.2. Then each of statements (i)–(ii) below holds:

(i) For all α ∈ Z, 0 ≤ i ≤ d, and 0 ≤ j ≤ p, we have

E∗αwij =

 0 if α 6= v + i+ j,

wij if α = v + i+ j.

(ii) For 0 ≤ i ≤ d and 0 ≤ j ≤ p, we have

Lwij = 3(d− i+ 1)wi−1,j + (p− j + 1)wi,j−1 (12)

Fwij = (t+ 2i− 2j)wij (13)

Rwij = (i+ 1)wi+1,j + 3(j + 1)wi,j+1 (14)

where wkl := 0 whenever k /∈ {0, 1, . . . , d} or l /∈ {0, 1, . . . , p}.
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Proof. (i) holds by properties of dual primitive idempotents. (ii) follows immediately from

(i), (3), and (11).

5 Quasi-isomorphic modules of Doob graphs

In this section, we prove a necessary and sufficient condition for irreducible T -modules
to be isomorphic as Q-modules but non-isomorphic as T -modules. We establish this by
considering all possible pairs of irreducible T -modules and by proving whether or not a
quasi-isomorphism exists in each case. In this section, let W := W (n,m; v, d, p, t) and
W ′ := W (n,m; v′, d′, p′, t′).

Lemma 5.1. With reference to Assumption 4.1, suppose (v, d, p, t) = (v′, d′, p′, t′). Then

W and W ′ are isomorphic irreducible Q-modules.

Proof. Follows from Lemma 3.1, Proposition 4.2(v), and the fact that Q ⊆ T .

Lemma 5.2. With reference to Assumption 4.1, assume v = v′ and (d, p, t) 6= (d′, p′, t′).

Then W and W ′ are non-isomorphic irreducible Q-modules.

Proof. By Lemma 3.1, W and W ′ must be irreducible Q-modules. Suppose they are iso-

morphic as Q-modules. By Lemma 3.5 and since v = v′, the two are quasi-isomorphic

T -modules with the same endpoint. By Lemma 3.4, the two are isomorphic T -modules.

Hence, (v, d, p, t) = (v′, d′, p′, t′) which contradicts assumption.

Lemma 5.3. With reference to Assumption 4.1, suppose v 6= v′ and t 6= t′. Then W and

W ′ are non-isomorphic irreducible Q-modules.

Proof. Let {wij} (resp. {w′ij}) denote a basis for W (resp. W ′) satisfying the conditions of

Proposition 4.2. Suppose W and W ′ are isomorphic as Q-modules. By Lemma 3.5, there

exists a quasi-isomorphism σ from W to W ′. Since σ is a bijection and w′00 is a nonzero

vector in W ′, there exist scalars {ckl | 0 ≤ k ≤ d, 0 ≤ l ≤ p} such that

σ(c00w00 + c10w10 + c01w01 + · · ·+ cdpwdp) = w′00. (15)

Pre-multiplying (15) by E∗v′ and using Lemma 4.4(i) with α = v′, we obtain

E∗v′σ(c00w00 + c10w10 + c01w01 + · · ·+ cdpwdp) = w′00. (16)

Using (7) with i = v and γ = v′ − v, (16) becomes

σ(E∗v (c00w00 + c10w10 + c01w01 + · · ·+ cdpwdp)) = w′00. (17)
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Using Lemma 4.4(i) with α = v, (17) becomes σ(c00w00) = w′00. Observe that c00 6= 0 since

σ is a bijection and w00 and w′00 are nonzero vectors. By (6), we have σF = Fσ on W . By

this and (13), we have

tw′00 = σF (c00w00) = Fσ (c00w00) = Fw′00 = t′w′00

and so t = t′ which is a contradiction. So, W and W ′ are non-isomorphic as Q-modules.

Irreducibility follows from Lemma 3.1.

Lemma 5.4. With reference to Assumption 4.1, assume v 6= v′ and (d, p, t) = (d′, p′, t′).

Then W and W ′ are isomorphic irreducible Q-modules.

Proof. Let {wij} (resp. {w′ij}) denote a basis for W (resp. W ′) satisfying the conditions of

Proposition 4.2. To prove W and W ′ are isomorphic Q-modules, it suffices to show that the

two are quasi-isomorphic. We define the C-linear map σ : W →W ′ such that σ(wij) = w′ij

for all i, j ∈ N∪ {0}. We claim σ is a quasi-isomorphism. Clearly, σ is a bijection. By (12),

we obtain

σL(wij) = 3(d− i+ 1)w′i−1,j + (p− j + 1)w′i,j−1 = Lσ(wij) (0 ≤ i ≤ d, 0 ≤ j ≤ p).

Since {wij} is a basis for W , we get σL = Lσ on W . Analogously, we prove σF = Fσ and

σR = Rσ on W by (13)–(14). By Lemma 4.4(i), we have

σE∗α(wij) =

 0 if α 6= v + i+ j

w′ij if α = v + i+ j
= E∗α+(v′−v)w

′
ij = E∗α+(v′−v)σ(wij)

for all i, j ∈ N ∪ {0} and α ∈ Z. Since {wij} is a basis for W , we get σE∗α = E∗α+v′−vσ on

W . Claim holds. Irreducibility immediately follows from Lemma 3.1.

Lemma 5.5. With reference to Assumption 4.1, let v 6= v′, t = t′, and (d + 1)(p + 1) 6=
(d′ + 1)(p′ + 1). Then W and W ′ are non-isomorphic irreducible Q-modules.

Proof. By Proposition 4.2, we have dimW = (d + 1)(p + 1) 6= (d′ + 1)(p′ + 1) = dimW ′.

So, the two are non-isomorphic Q-modules. Irreducibility follows from Lemma 3.1.

Lemma 5.6. With reference to Assumption 4.1, let v 6= v′, t = t′, and (d + 1)(p + 1) =

(d′ + 1)(p′ + 1) but (d, p) 6= (d′, p′). Then W and W ′ are non-isomorphic irreducible Q-

modules.

Proof. Let A|W (resp. A|W ′) denote the restriction of A on the irreducible moduleW (resp.

W ′). Suppose W and W ′ are isomorphic Q-modules. Since A ∈ Q, the trace of A|W must

be equal to the trace of A|W ′ . By (11), we have

trace(A|W ) = (d+ 1)(p+ 1)(t+ d− p)
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trace(A|W ′) = (d′ + 1)(p′ + 1)(t′ + d′ − p′).

Since (d + 1)(p + 1) = (d′ + 1)(p′ + 1) and t = t′, we get d − p = d′ − p′. By Lemma 3.2

and Proposition 4.2(i), d + p = d′ + p′. Consequently, we obtain d = d′ and p = p′ which

contradict assumption. Thus, the two are non-isomorphic Q-modules. Irreducibility follows

from Lemma 3.1.

Theorem 5.7. With reference to Assumption 4.1, W and W ′ are isomorphic irreducible

Q-modules if and only if (d, p, t) = (d′, p′, t′). Equivalently, W and W ′ are quasi-isomorphic

T -modules if and only if (d, p, t) = (d′, p′, t′).

Proof. Immediate from Lemmas 5.1–5.6.

Corollary 5.8. With reference to Assumption 4.1, we have Q 6= T.

Proof. Follows immediately from Proposition 3.6 and Theorem 5.7.

Remark 5.9. It was shown in [24, Theorem 5.1] that there is a homomorphism from the

universal enveloping algebra of the classical Lie algebra so4 (also known as special orthogonal

algebra) to the quantum adjacency algebra Q of D. In [24, Theorem 5.5], it was proven

that every irreducible Q-module is an irreducible so4-module from the perspective of highest

weight theory. With this approach, Theorem 5.7 was proven in [24, Corollary 5.7] via Lie

algebraic means. The current paper directly carries out the computation mentioned in [24,

Remark 5.8].
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