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Abstract

For a complex variable z, the Dedekind η-function is defined by the infinite product
η(z) = q1/24

∏∞
n=1(1 − qn), where q = exp(2πiz). Let s = 24/ gcd(N − 1, 24) be the

integer measuring how far N − 1 is from being divisible by 24. For a positive divisor l
of N and an integer k with 0 ≤ k < N

l
and gcd(l, k,N/l) = 1, we study the generalized

Weber function νsl,k,N/l, where

νl,k,N/l(z) =
√
l ·
η( lz+k

N/l
)

η(z)
.

We show that the functions νl,k,N/l(z) are modular functions of level 24N . We also
present a technique for computing the modular polynomial associated to the function
ν241,0,6.
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1 Introduction

One of the central features of class field theory focuses on describing abelian extensions
of number fields explicitly. The celebrated Kronecker-Weber theorem asserts that abelian
extensions over the rational field Q are subfields of the cyclotomic fields Q(ζ) obtained by
adjoining a root of unity ζ ∈ C to Q. Such abelian extensions can be constructed using the
roots of a cyclotomic polynomial ΦN for some positive integer N , which is irreducible over
Q. By Galois theory, we can find explicit generators for the subfields of Q(ζ).

For imaginary quadratic fields K, there is an analogue of the Kronecker-Weber theorem
known as the theory of complex multiplication. This theory describes abelian extensions
of K as ray class fields generated by the values of suitable modular functions, which are
meromorphic functions defined on the upper half plane H. One can use modular functions
of higher level, which form the modular function field F , to generate such class fields. One
of the important results in the theory of complex multiplication is the following.
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Theorem 1.1. Let K be imaginary quadratic and let θ ∈ K ∩H. Then the maximal abelian

extension Kab over K is generated by the finite values of h(θ) for all modular functions

h ∈ F .

An immediate consequence of the above theorem is the existence of ring class fields over
K. For an element θ ∈ H in an order O of K with discriminant ∆(O), the value j(θ), where

j(z) =
1

q
+ 744 + 196884q + 21493760q2 + · · ·

is the j-invariant, and q = e2πiz, is an algebraic integer which generates the ring class field
HO over K. The minimal polynomial of j(θ) over K is called the ring class polynomial
P j∆(O) which has degree h(∆(O)), the class number of ∆(O), and surprisingly integer coef-

ficients. We remark that if O is the ring of integers of K, then j(θ) generates the Hilbert
class field HK over K.

For small absolute values of discriminants ∆(O) of O, the class polynomial P j∆(O) be-

comes unwieldy. For an order O = Z[
√
−38] of K = Q(

√
−38) with class number 6, we

have
P j−152(X) = X6 − 66246265919280000X5

+ 17024071380555203520000000X4

+ 6854544294799483688960000000000X3

+ 2783058624787093614292992000000000000X2

− 1380504171426125758791680000000000000000X

+ 472390748138731280269312000000000000000000

and as the discriminant “grows”, the coefficients of P j∆(O) grows rapidly. Weber [13] dis-

covered that in some cases, the values of modular functions of higher levels at algebraic
integers can generate ring class fields whose minimial polynomials have smaller coefficients.
In the example above, using the Weber function f2(z) = η( z2 )/η(z) of level 48, we find that

f22(
√
−38) generates HO over K with minimal polynomial

P f2
−152 = X6 − 16X4 − 40X3 − 32X2 + 8

over K. His theory of these class invariants relies on a potpourri of clever tricks, numerical
observations and open questions that have no clear distinctions to one another and thus can
be hardly regarded as a “systematic” procedure. The regained interest in class invariants
was due partly to Stark’s comments [12] that Heegner’s Weber-inspired proof of the class
one problem for imaginary quadratic fields was correct and mainly to Shimura’s contribu-
tions to modular forms through his book [10]. The interested reader may read the works of
Schertz [9], Gee [6] and Sotakova [11] about several results concerning these class invariants.

In this paper, we will not dwell on finding class invariants and instead focus on examining
the properties of the generalized Weber functions

νl,k,N/l(z) =
√
l ·
η( lz+kN/l )

η(z)
,

where l is a positive divisor of N and k is an integer with 0 ≤ k < N
l and gcd(l, k,N/l) = 1.

Enge and Morain [4] studied the modularity of these functions in the case l = 1 and k = 0
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and proved that for some divisor e of s = 24/ gcd(N − 1, 24), νe1,0,N is a modular function
of level 24N . Gee [6] also examined these functions and showed that e can be taken as 1,
that is, ν1,0,N is a modular function of level 24N using Meyer’s formula. She then remarked
that the functions ν1,k,N for 1 ≤ k < N and νN,0,1 are modular functions of level 24N as a
consequence of her result. Our main theorem is a generalization of Gee’s result.

Theorem 1.2. For all positive divisors l of N and integers k with 0 ≤ k < N
l and

gcd(l, k,N/l) = 1, νl,k,N/l is a modular function of level 24N .

The flow of this paper is as follows. In Section 2, we present the actions of the generators
of the full modular group Γ = SL2(Z) on the generalized Weber functions νl,k,N/l and prove
the above theorem using Meyer’s formula. In Section 3, we show that νsl,k,N/l form a set

of conjugates of νs1,0,N using coset representatives of the congruence subgroup Γ0(N) over
Γ. We also provide a method of constructing the modular polynomial of νs1,0,N using these
representatives and illustrate the process for N = 6 using resultants.

2 Properties of the generalized Weber functions νl,k,N/l

We consider functions that are invariant under the action of the congruence subgroups of Γ,
namely

Γ0(N) =

{[
a b
c d

]
∈ Γ : N | b

}
, Γ0(N) =

{[
a b
c d

]
∈ Γ : N | c

}
and

Γ(N) =

{[
a b
c d

]
∈ Γ : a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
for some positive integer N . For a congruence subgroup Γ′ of Γ, we denote the field of all
modular functions that are invariant under Γ′ by CΓ′ . Thus, CΓ = C(j) and the extension
CΓ0(N)/CΓ is not normal. Equivalently, since

Γ0(N) =

[
0 −1
1 0

]−1

Γ0(N)

[
0 −1
1 0

]
,

any modular function f(z) for Γ0(N) gives rise to a modular function f([ 0 −1
1 0 ]z) for Γ0(N).

We define a modular function of level N by a function f that is invariant under Γ(N) and
whose q-expansion has coefficients in the cyclotomic field Q(ζN ), that is, f ∈ Q(ζN )((q1/N )),
where q = e2πiz.

For a complex variable z, we recall Dedekind η-function defined by

η(z) = q1/24
∞∏
n=1

(1− qn).

Let s = 24/ gcd(N − 1, 24) be the integer measuring how far N − 1 is from being divisible
by 24. For a positive divisor l of N and an integer k with 0 ≤ k < N

l and gcd(l, k,N/l) = 1,
we study the generalized Weber function νsl,k,N/l, where

νl,k,N/l(z) =
√
l ·
η( lz+kN/l )

η(z)
.
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In order to establish that generalized Weber functions are invariant under the action of
Γ(24N), we need to examine the transformation behavior of these functions under the
action of Γ. Meyer’s formula provides an explicit action of Γ on η.

Lemma 2.1 (Meyer’s formula). Let M =

a b

c d

 ∈ Γ be normalized so that c ≥ 0 and

d > 0 if c = 0. Set c = 2rc0 with c0 odd if c 6= 0, for c = 0 set c0 = 1 and r = 0. Then

η ◦M(z) = ε(M)
√
cz + d η(z)

where the real part of
√
cz + d is positive and

ε(M) =

(
a

c0

)
ζ
ab+cd(1−a2)−ca+3c0(a−1)+3r(a2−1)/2
24 .

Proof. See [9, Prop. 2].

Lemma 2.2. Let l, k,N be integers with l and N positive such that l | N, 0 ≤ k < N
l and

gcd(l, k, Nl ) = 1 . Then there exist matrices U, V ∈ Γ such that

U

 l k

0 N
l

 =

1 0

0 N

V.
Proof. Since gcd(l, k, Nl ) = 1, there exists t ∈ Z such that gcd(lt− k, Nl ) = 1. By extended

Euclidean algorithm, we can find integers x and y such that x(lt− k)− yN
l = 1. Choosing

the matrices

U =

 x y

N
l lt− k

 , V =

xl xlt− 1

1 t


completes the proof.

The action of Γ on the generalized Weber functions can be obtained from the action of
the generators

S :=

[
0 −1
1 0

]
and T :=

[
1 1
0 1

]
on η via the formulas

η ◦ S(z) = ζ−1
8

√
zη(z) and η ◦ T (z) = ζ24η(z).

Lemma 2.3. Let l, k,N be integers with l and N positive such that l | N, 0 ≤ k < N
l and

gcd(l, k, Nl ) = 1 . For i ∈ {1, 2}, there exist integers li, ki and matrices Mi ∈ Γ such that

1. li > 0, li | N, 0 ≤ ki < N
li
, gcd(li, ki,

N
li

) = 1, and

2.

 l k

0 N
l

S = M1

l1 k1

0 N
l1

 and

 l k

0 N
l

T = M2

l2 k2

0 N
l2

.
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Proof. As gcd(l, k, Nl ) = 1, there exists t ∈ Z such that gcd(lt − k, Nl ) = 1. By extended

Euclidean algorithm, we can find integers x and y such that x(lt− k)− yN
l = 1. By Lemma

2.2, we have, l k

0 N
l

S = U−1

1 0

0 N

V S = U−1

1 0

0 N

V S
l1 k1

0 N
l1

−1 l1 k1

0 N
l1


where

U =

 x y

N
l lt− k

 , V =

xl xlt− 1

1 t

 .
We compute

U1 :=

1 0

0 N

V S
l1 k1

0 N
l1

−1

=

1 0

0 N

xlt− 1 −xl
t −1

 1
l1
−k1N

0 l1
N


=

xlt−1
l1

−k1(xlt−1)−xll1
N

Nt
l1

−l1 − k1t

 .
Choosing M1 = U−1U1 ∈ Γ, we require that U1 ∈ Γ. Thus, we take l1 = gcd(xlt − 1, N)

and since the upper right entry of U1 is an integer, we have

N | −k1(xlt− 1)− xll1 ⇐⇒
N

l1
| −k1

(
xlt− 1

l1

)
− xl.

As N
l1

and xlt−1
l1

are relatively prime, xlt−1
l1

is invertible modulo N
l1

. We then take k1 =

−xl(xlt−1
l1

)−1 (mod N
l1

). Let d = gcd(l1, k1,
N
l1

). Then d | k1 and d | l1 | xlt− 1. But d | Nl1
so d | −k1(xlt−1

l1
)− xl. This implies d | xl so that d | xlt− (xlt− 1) = 1 and d = 1. On the

other hand, we have l k

0 N
l

T = U−1

1 0

0 N

V T = U−1

1 0

0 N

V T
l2 k2

0 N
l2

−1 l2 k2

0 N
l2


We compute

V1 :=

1 0

0 N

V T
l2 k2

0 N
l2

−1

=

1 0

0 N

xl xlt− 1 + xl

1 1 + t

 1
l2
−k2N

0 l2
N


=

xll2 −k2lx+l2(xlt−1+xl)
N

N
l2

l2 − k2 + l2t

 .
Again, choosing M2 = U−1V1, we require that V1 ∈ Γ. We can take l2 = l and as the upper

right entry of V1 is an integer, we have

N | −k2lx+ l(xlt− 1 + xl) ⇐⇒ N

l
| −k2x+ xlt+ xl − 1.
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Note that x is invertible modulo N
l , so we take k2 = (xlt + xl − 1)x−1 (mod N

l ). Let

e = gcd(l, k2,
N
l ) so that e | xl and e | k2. But e | Nl so e | −k2x+ xlt+ xl− 1. This implies

e = 1. In both cases, condition (1) and (2) hold for the values of li, ki and N
li
, i ∈ {1, 2}.

Remark 2.4. In the proof of Lemma 2.3, we explicitly compute the matrices

M1 = U−1U1 =

 ∗ ∗
N/l

l1
−k1

l

 and M2 = U−1V1 =

∗ ∗
0 1

 ,
where the asterisks denote integer entries. Note that the entries on the second row of M1

are integers. Indeed, since l1 = gcd(xlt− 1, N), we have gcd(l1, l) = 1 and l1 | N . As l | N
and N | −k1(xlt − 1) − xll1, we see that l | k1 and l1 | Nl . Thus, the assertion follows and

we can apply Meyer’s formula to M1 and M2.

Using Lemmata 2.1 − 2.3, we derive the transformation formulas

νl,k,N/l ◦ S(z) =
√
l ·
η ◦ [ l k

0 N/l ]S(z)

η ◦ S(z)
=
√
l ·
η ◦M1[ l1 k1

0 N/l1
](z)

η ◦ S(z)

=
√
l ·
ε(M1)

(√
N/l
l1

[ l1 k1
0 N/l1

]z − k1
l

)
η ◦ [ l1 k1

0 N/l1
](z)

η ◦ S(z)

=
√
l ·
ε(M1)

√
N/l
l1

( l1z+k1N/l1
)− k1

l η( l1z+k1N/l1
)

ζ−1
8

√
z η(z)

=
√
l ·
ε(M1)

√
l1z
l η( l1z+k1N/l1

)

ζ−1
8

√
z η(z)

= ζ8ε(M1)νl1,k1,N/l1(z) (1)

and

νl,k,N/l ◦ T (z) =
√
l ·
η ◦ [ l k

0 N/l ]T (z)

η ◦ T (z)
=
√
l ·
η ◦M2[ l k2

0 N/l ](z)

η ◦ T (z)

=
√
l ·
ε(M2)η( lz+k2N/l )

η ◦ T (z)
=
√
l ·
ε(M2)η( lz+k2N/l )

ζ24η(z)

= ζ−1
24 ε(M2)νl,k2,N/l(z) (2)

where l1, k1, k2 are integers and M1,M2 ∈ Γ are matrices satisfying the conditions of Lemma
2.3.

Enge and Morain used Meyer’s formula to find the action of S and T on ν1,0,N , which
proves the modularity of a power of ν1,0,N as shown by the following theorem.

Theorem 2.5. Let e and t be positive integers such that s | t | 24 and e | t. Write N = 2λN1

with N1 odd. If N1 is a square or e is even, then νe1,0,N is invariant under Γ( te ) ∩ Γ0( teN).

Otherwise, νe1,0,N is invariant under Γ( teN1) ∩ Γ0( teN). In both cases, νe1,0,N is a modular

function of level 24N .
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Proof. See [4, Thm. 3.2].

Gee utilized the same formula and established that the exponent can be taken as 1, as
shown by the following theorem.

Theorem 2.6. The function ν1,0,N is a modular function of level 24N . Consequently, the

functions ν1,k,N , 1 ≤ k < N and νN,0,1 are modular functions of level 24N .

Proof. See [6, p. 76, Thm. 5] and [6, p. 77, Lem. 8]. The second statement follows from

the fact that Γ(24N) is a normal subgroup of Γ (cf. [6, p. 77]).

Proof. (of Theorem 1.2). Let M = [ a bc d ] ∈ Γ(24N). By replacing M with −M if necessary,

we may assume that c ≥ 0 and d > 0 if c = 0. Consider the matrix

Ml,k =

 l k

0
N

l

M
 l k

0
N

l

−1

=

a+
ck

l

bl + dk − k(a+ ck
l )

N
l

cN

l2
d− ck

l

 .
Since c ≡ 0 (mod 24N), l | c and N

l |
c
l . Also, since M is equivalent to the 2-by-2 identity

matrix modulo 24N , we have bl+dk−k(a+ ck
l ) ≡ 0 (mod N

l ). Thus Ml,k ∈ Γ, and applying

Meyer’s formula to both M ∈ Γ and Ml,k yields

νl,k,N/l ◦M =
√
l ·
η ◦ [ l k

0 N/l ]M(z)

η ◦M(z)
=
√
l ·
η ◦Ml,k[ l k

0 N/l ](z)

η ◦M(z)

=
√
l ·
ε(Ml,k)

(√
cN
l2 [ l k

0 N/l ]z + d− ck
l

)
η ◦ [ l k

0 N/l ](z)

η ◦M(z)

=
√
l ·
ε(Ml,k)

√
cN
l2 ( lz+kN/l ) + d− ck

l η( lz+kN/l )

ε(M)
√
cz + d η(z)

=
√
l ·
ε(Ml,k)

√
cz + d η( lz+kN/l )

ε(M)
√
cz + d η(z)

.

As M ∈ Γ(24N), we see that Ml,k is equivalent to the 2-by-2 identity matrix modulo 24.

Write c = 2rc0, l = 2sl0 and N = 2tN0 with c0, l0 and N0 odd. Then

ε(Ml,k) =

(
a+ ck

l
c0N0

l20

)
=

(
a+ ck

l
c0
l0

)(
a+ ck

l
N0

l0

)
=

(
a
c0
l0

)(
a
N0

l0

)

=

(
a

c0

)(
a

l0

)−1

=

(
a

c0

)
= ε(M),

since a ≡ 1 (mod 24N) implies a ≡ 1 (mod l0) and a ≡ 1 (mod N0

l0
). Hence, νl,k,N/l ◦M =

νl,k,N/l for all such values of l and k. As
√
l ∈ Q(ζ24N ), the coefficients of the q-expansion

of νl,k,N/l lie on Q(ζ24N ). We conclude that νl,k,N/l is a modular function of level 24N .
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3 Modular polynomial for ν24
1,0,6

We introduce the modular polynomial associated to the modular function νs1,0,N which is
its characteristic polynomial with respect to the field extension CΓ0(N)/CΓ. This extension
is not Galois as Γ0(N) is not a normal subgroup of Γ, so we consider the embeddings of
CΓ0(N) into the algebraic closure of CΓ corresponding to the right coset representatives of
Γ0(N)\Γ. We now define

Φ[ν](X) :=
∏

g∈Γ0(N)\Γ

(X − νs1,0,N ◦ g).

We see clearly that Φ[ν](X) ∈ C(j)[X]. Because νs1,0,N and νs1,0,N ◦ S are holomorphic

in H ∪ P1(Q) and have rational q-expansions, by Hasse q-expansion principle [3], we have
Φ[ν](X) ∈ Z[j,X]. In order to compute Φ[ν](X) explicitly, we need an exact description of
the right cosets Γ0(N)\Γ, which can be obtained by using right cosets of Γ0(N)\Γ.

Theorem 3.1 (Orive). Let d be a proper divisor of N and let

Md =

{
dt : 0 < t <

N

d
, gcd(t, d,

N

d
) = 1

}
.

Denote M as the union of all Ms for all proper divisors s of N and for each m ∈ M ,

let n := n(m) be the smallest positive integer such that N | nm2. Then a complete set of

representatives for right cosets of Γ0(N)\Γ is given by

{I} ∪ {ST k : 0 ≤ k ≤ N − 1} ∪ {STmST j : m ∈M, 0 ≤ j ≤ n− 1}.

Proof. See [8, Prop. 2].

Corollary 3.2. Under the conditions of Theorem 3.1, a complete set of representatives for

right cosets of Γ0(N)\Γ is given by

{I} ∪ {SRk : 0 ≤ k ≤ N − 1} ∪ {SRmSRj : m ∈M, 0 ≤ j ≤ n− 1}

where R = (TST )−1. We remark that [Γ : Γ0(N)] = ψ(N) =
∏
p prime,p|N (1 + 1

p ).

Proof. Write Γ as a disjoint union Γ = tψ(N)
k=1 Γ0(N)gk for some right cosets representatives

g1, . . . , gψ(N) of Γ0(N) over Γ and let u ∈ Γ. Then u = vgj for some v ∈ Γ0(N) and

j ∈ {1, . . . , ψ(N)}. We have ut = (gj)
tvt, where M t denotes the transpose of a matrix

M . As ut ∈ Γ, we see that Γ = tψ(N)
k=1 (gk)tΓ0(N) and applying the bijection gΓ0(N) 7→

Γ0(N)g−1 yields Γ = tψ(N)
k=1 Γ0(N)((gk)t)−1. The desired conclusion follows from the fact

that (St)−1 = S and (T t)−1 = R.

Using the transformation formulas (1) and (2), and applying Lemma 2.3 and Corollary
3.2, we have νs1,0,N ◦T k = ζ−ks24 νs1,k,N , ν

s
1,0,N ◦S = νsN,0,1 and for a right coset representative

M of Γ0(N)\Γ that is not S nor a power of T , we have νs1,0,N ◦M = ζsl,kν
s
l,k,N/l for some

ζl,k ∈ Q(ζ24). Thus, we obtain the following.
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Corollary 3.3. The conjugates of νs1,0,N are the modular functions ζsl,kν
s
l,k,N/l for some

positive divisor l of N , integer k with 0 < k < N
l and gcd(k, l, Nl ) = 1, and an element

ζl,k ∈ Q(ζ24). Consequently, we have

Φ[νs1,0,N ](X, j) :=
∏
l,k

(X − ζsl,kνsl,k,N/l)

and the degree of Φ[νs1,0,N ](X, j) in X and j are ψ(N) and

s

24

N − 1 +
∑

1<k<N,1<gcd(k,N)<
√
N

µ(k)

(
1− gcd(k,N)2

N

) ,
respectively, where µ(k) is the smallest integer such that µ(k)k − 1 and N are coprime.

Proof. See [4, Thm. 7.3].

Remark 3.4. We note that if N = pq, where p < q are primes, then the degree of

Φ[νs1,0,N ](X, j) in j is s
24 (N − 1 + q − p) (see [4, Thm. 7.6]).

Remark 3.5. We can also find the modular polynomial Φ[νs1,0,N ] in the case that N = pq

with p and q prime using resultants, which we describe as follows (cf. [7]). Write νs1,0,N (z) =

νs1,0,p(z)ν
s
1,0,q(z/p). For some divisors s1 and s2 of s, the modular polynomials Φ[νs11,0,p] and

Φ[νs21,0,p] satisfy

Φ[νs11,0,p](ν
s1
1,0,p(z), j(z)) = 0, Φ[νs21,0,q](ν

s2
1,0,q(z/p), j(z/p)) = 0.

On the other hand, there is a bivariate polynomial Φp such that Φp(j(z), j(z/p)) = 0 (known

as the classical modular polynomial). We then eliminate νs11,0,p(z), ν
s2
1,0,q(z/p) and j(z/p)

using resultants to get a polynomial Φ with Φ(νs1,0,N , j) = 0 and then factor Φ to obtain the

correct modular polynomial with degree ψ(N) in X. We illustrate this method for N = 6.

We know that the conjugates of ν24
1,0,6 are the generalized Weber functions ν24

l,k,6/l. Write

ν24
1,0,6(z) =

(
η( z6 )

η(z)

)24

=

(
η( z/23 )

η(z/2)

)12·2(
η( z2 )

η(z)

)24

(3)

and let g(z) = η(z/3)/η(z) and f(z) = η(z/2)/η(z). The modular polynomials for g(z/2)12

and f(z)24 are

Φ[g(z/2)12](X, j1) = X4 + 36X3 + 270X2 + (756− j1)X + 729 (4)

where j1 := j1(z) = j(z/2) (see [6, eq. 5 p. 73] or [13, p. 255]) and

Φ[f(z)24](X, j) = X3 + 48X2 + (768− j)X + 4096, (5)
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(see [2, p. 99]) respectively. The functions j and j1 are related by the classical modular

polynomial (see [2, p. 75])

Φ2(j, j1) := j3 + j3
1 − j2j2

1 + 1488(j2j1 + jj2
1)− 162000(j2 + j2

1) + 40773375jj1

+ 8748000000(j + j1)− 157464000000000. (6)

Using MAGMA [1], we take the resultant of equations (3) to (6) and choose a factor whose

degree in X is ψ(6) = 12, arriving at the modular polynomial

Φ[ν241,0,6](X, j) = X12 + 36288X11 + (3440226816 − 431460j)X10

+ (109056j2 − 50163935040j + 109207646945280)X9

+ (−6696j3 + 3372539814j2 − 3060482822737920j + 4284327340231557120)X8

+ (144j4 + 35130240j3 + 29781629564671296j2 − 150945357921479884800j

+ 111106635441567808094208)X7

+ (−j5 + 3864j4 − 7502360202978084j3 − 1266015680155533252096j2

− 424265080525480124743680j + 2248666474050361425420877824)X6

+ (460319565496320j4 − 232025985564586752960j3

+ 3266539722689396219412480j2 − 16349318776164233382608240640j

+ 39752136338000494961380407902208)X5

+ (−9896812609536j5 − 2407476972082120479j4 − 9931694818294487485440j3

+ 2124144831431112866880159744j2 + 359239342288242741416799177277440j

+ 404566267530357320253454333111173120)X4

+ (68719476736j6 − 311711546474496j5 + 507978495201116160j4

− 130008450295278194863325184j3 + 65427952163338431948417449066496j2

− 870776926913051856042880101179719680j

+ 1565033484678756823775228573867342561280)X3

+ (2795153950927245451198464j4 + 682156440320053120453815828480j3

+ 3345818930503173307774960259825664j2

+ 1302588988593527673994007935136563200j

+ 14084399260290413838252276776033058816)X2

+ (−19408409961765342806016j5 + 72665086896849443465723904j4

− 89717626423815861900574457856j3 + 40562091222757453098173696311296j2

− 5054530374576816035557692848209920j

+ 42250535333590949287706130842124288)X

+ 42247883974617233597120303333376.

We see that the degree of Φ[ν24
1,0,6](X, j) in j is 6, as predicted by the previous remark.
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The minimality of Φ[ν24
1,0,6](X, j) follows from the fact that ν24

1,0,6 ◦S is the only simple root

having a positive order (see [5] for the definition of the order of a q-expansion). We deduce

that Q(j) ⊂ Q(ν1,0,6) and Q(j) ⊂ Q(νl,k,6/l) for all permissible values of l and k.

Acknowledgement: The authors would like to thank the anonymous referees for their
insightful comments that improved the content of the manuscript.
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325–343.

[10] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Prince-
ton University Press, NJ, 1971.

[11] J. Sotakova, Eta quotients and class fields of imaginary quadratic fields, Master’s thesis,
ALGANT/Universiteit Leiden, 2017.

[12] H. Stark, On a ”gap” in a theorem of Heegner, J. Number Theory 1 (1969), 16–27.

[13] H. Weber, Lehrbuch der Algebra, vol. 3, Friedrich Vieweg und Sohn, 1908.



12 R.H. Guadalupe and R.O. Celeste

This page is intentionally left blank


	Introduction
	Properties of the generalized Weber functions l,k,N/l
	Modular polynomial for 1,0,624

