
MATIMYÁS MATEMATIKA Journal of the Mathematical Society of the Philippines
ISSN 0115-6926 Vol. 45 No. 2 (2022) pp. 1-24

A Particle Swarm Optimization Algorithm using
Gamma Distribution Function

Nialle Loui Mar “NLM” T. Alcantara
Mathematics and Allied Disciplines Department

Don Mariano Marcos Memorial State University - South La Union Campus

Agoo, La Union

nlalcantara@dmmmsu.edu.ph

Rizavel C. Addawe
Department of Mathematics and Computer Science

University of the Philippines Baguio

Baguio City, Benguet

rcaddawe@up.edu.ph

Joel M. Addawe
Department of Mathematics and Computer Science

University of the Philippines Baguio

Baguio City, Benguet

jmaddawe@up.edu.ph

Abstract

The Particle Swarm Optimization (PSO) is a swarm intelligence-based, population-
based meta-heuristic optimization algorithm. In this study, a variant of the PSO
is introduced by using the standard gamma distribution function in each particle’s
movement. The mathematical model

S = (St)t∈N0 = ((Xt, Vt, Lt, Gt))t∈N0 = ((X0, V0, L0, G0), (X1, V1, L1, G1), . . .),

where S is the swarm, N the number of particles, and Xt, Vt, Lt, and Gt the properties
of each particle of the gamma-based swarm was presented and analysed. Numerical
simulations were performed on five (5) test functions to validate the analytical results
by identifying the effects of the different values of w and α to the overall performance
of the proposed algorithm in a setting that is beneficial to it. Results showed that
decreasing the value of w, with their α values constant, will decrease the number of
iterations needed to find the global optima. Meanwhile, decreasing the value of α,
with w being constant, will decrease the number of iterations needed to find the global
optima. These observations, however, have exceptions. Furthermore, numerical ex-
periments on the same benchmark functions to test success rates, average convergence
values, and average convergence velocities were conducted to compare performance of
the proposed algorithm with the standard PSO. The results suggests that the standard
PSO outperforms the proposed algorithm in terms of success rates on some functions,
which is also true in terms of average cost value obtained on some functions, although
the difference between cost value is relatively small. In terms of average convergence
velocity, the proposed algorithm outperformed the standard PSO on some functions.

Keywords: Particle Swarm Optimization, meta-heuristics, optimization, algorithm,
gamma distribution
2020 MSC: 90C26, 90C59, 62M99

1

2 N. Alcantara, R. Addawe, J. Addawe

1 Introduction

The Particle Swarm Optimization (PSO) is a swarm intelligence-based, population-based
meta-heuristic optimization method proposed by Kennedy and Eberhart in 1995 [7]. Mainly
inspired by the metaphor of social interaction and originally intended for the simulation of
bird flock behaviour, this algorithm works by using and maintaining a population of in-
dividuals, called “particles”, that moves around a predetermined multi-dimensional search
space [5, 7, 10]. Each of these particles are candidate solution to the optimization problem
at hand, changing their state and adjusting their trajectories akin to “flying” until they
discover potentially better solutions or until a stopping criteria is reached [10, 11].

A particle n in the swarm S with size N is comprised of three D-dimensional vectors,
namely, the current position (

»

Xn), local attractor (
»

Ln), and the current velocity (
»

V n), where
D is the dimensionality of the search space [13, 15, 19]. For some optimization problem
with objective function f : C ⊂ Rn → R being minimized, the movement of a particle n is
influenced by the update equation for one element in the vector

»

Ln presented in equation
(1) while the update equation for one element in the vector

#»

G is presented in equation (2),
where n ∈ N . These update equations are dependent on the time step t ∈ T .

Ln
t+1 =

{
Ln
t if f(Xn

t+1) ≥ f(Ln
t)

Xn
t+1 if f(Xn

t+1) ≤ f(Ln
t),

(1)

Gt ∈
{
L0
t , L

1
t , · · · , LN

t

} ∣∣f(Gt) = min
{
f(L0

t), f(L
1
t), · · · , f(LN

t)
}
. (2)

The positions are identified with search points X ∈ S and velocities are identified
with vectors V ∈ Rn. The actual movement of the particles is governed by the velocity
update equation (3) and the position update equation (4):

V n,d
t+1 = V n,d

t + c1 · qn,dt ·
[
Ln,d
t −Xn,d

t

]
+ c2 · rn,dt ·

[
Gd

t −Xn,d
t

]
, (3)

Xn
t+1 = Xn

t + V n
t+1, (4)

where t ∈ T is the current iteration of the algorithm, d ∈ D denotes the particular dimension
the swarm is searching, c1 and c2 are the acceleration coefficients that control the influence
of the local and global attractor, respectively. Other parameters include the independent
random sequences, qn,dt , rn,dt ∼ U(0, 1), and w, or the inertia weight, that governs how much
of the previous velocity is retained.

The movement equations (3) and (4) are then repeated until some fixed termination cri-
terion or the global optimum is reached. The velocity of each particle is repeatedly adjusted
so that the particle stochastically fluctuates around the locations of the local and global
attractor.

Since each particle of the swarm has no ability to solve any problem by itself, progress
occurs only when there is particle interaction present. These particles in the swarm are
organized in some sort of communication structure or topology. The members of the swarm
that a certain particle can interact with are called its social neighbourhood, and the collec-
tion of these social neighbourhoods constitutes the swarm’s social network [12, 13, 15, 19].
Algorithm 1 represents how the PSO algorithm generally works.

A Particle Swarm Optimization Algorithm... 3

Algorithm 1

input : Object ive func t i on f : S → R to be minimized

output : G ∈ RD

// I n i t i a l i z a t i o n

f o r n = 1 → N do

I n i t i a l i z e p o s i t i o n Xn ∈ RD randomly ;

I n i t i a l i z e v e l o c i t y V n ∈ RD ;

I n i t i a l i z e l o c a l a t t r a c t o r Ln := Xn ’

I n i t i a l i z e G := argmin(L1,...,Ln)f ;

// Movement

repeat

f o r t = 1 → T do

f o r n = 1 → N do

f o r d = 1 → D do

V n,d
t+1 := w · V n,d

t + c1 · qn,dt ·
[
Ln,d
t −Xn,d

t

]
+ c2 · rn,dt ·

[
Gd

t −Xn,d
t

]
;

Xn
t+1 := Xn

t + V n
t+1 ;

i f f(Xn) ≤ f(Ln) then Ln := Xn ;

i f f(Xn) ≤ f(G) then G := Xn ;

u n t i l Termination criterion is reached ;

r e turn G ;

Table 1: Classical PSO algorithm

The initialization stage is where the position, velocity, local attractor, and global at-
tractor of each particle of the swarm are initialized. The initialization of the coordinates
of each particle is taken from U [−Bmax, Bmax] which disperses the initial positions of the
particles over some bounded search space. Other methods include using pseudo-random
number generators, Sobol’s sequence, or using other probability distributions [19, 15, 17].
Meanwhile, velocity can be initialized randomly, by setting the initial velocity to zero, or
by using the Half-Diff method [15]. Ln is usually set to be equal to the initial position of
the particle while G follows equation (2).

The movement stage operates by continuously repeating the update equations (1),
(2), (3), and (4) of each particle for every iteration. The algorithm stops: (i) when the ab-
solute difference between the known fitness value of the optimum point of the problem and
the global attractor that has been found so far is smaller than a given maximum admissible
error; or (ii) when the maximum number of fitness evaluations set in advance is reached [3].

4 N. Alcantara, R. Addawe, J. Addawe

PSO method has drawn an increasing number of researches mostly because of its simplic-
ity, ease of implementation, and efficiency. Although the PSO can be used to any function
f , it is commonly applied to black box optimization problems. Several real-world problems
where the PSO is applied successfully are in (1) biological, medical, and pharmaceutical
application; (2) design and optimization of communication networks; and (3) clustering,
classification, and data mining, among others [12].

Through the years, improvements were done to the algorithm either by creating a vari-
ant that surpasses the performance of original or by solving specific real-world problems.
This study considers the possibility of using the standard gamma distribution within the
framework of the original PSO and ascertain if the performance of this variant is better
than the original [16].

1.1 Why Change the Probability Distribution?

One of the shortcomings of the PSO algorithm is that it is easily trapped in local op-
tima. According to [4], this behaviour is due to the particle’s velocity becoming very small
with respect to the position of the local optima, which in turn contribute to the inability
of the particle to jump out and escape from the local optimum. With how the velocity up-
date equation is set up, if the range from which the random values are drawn is small, the
distances will have minimal influence on the updated particle velocity, and in turn cannot
increase the chance of the particle to escape local optima. Thus, it is necessary to modify
and/or improve the range of the random values.

In [4], they proposed using random values generated by (a) U [0, 1], (b) U [−1, 1], and
N (0, 1) and investigated its effects on the performance of the algorithm. Positive results
were produced leading them to conclude that PSO with large-scale random values can avoid
falling into local optima. A similar study in [8] used N (0, 1) and set w = 0 and c1 = c2 = 1
in their Gaussian Swarm. Results showed that it outperforms the standard PSO algorithm
in both convergence velocity and ability to escape from local optima in a suite of benchmark
functions. And in [14], the Lévy distribution replaced the uniform distribution in order to
induce exploration at any stage of convergence due to the power law behaviour. This enables
the swarm to escape from local minima.

1.2 Why use Gamma Distribution?

According to [4] and [8], the performance boost of their variants was attributed in the
larger standard deviation of N (0, 1). A larger standard deviation indicates that the values
are more spread out over a wider range, which in turn helps in the swarms exploration and
adds to its ability to escape local minima. The Lévy distribution produces more points at
large distances from the mean which fuels the swarm’s ability for exploration, and it also
produces more points at very small distances to the mean which fuels the swarm’s exploita-
tion ability when compared to a Gaussian distribution.

The gamma distribution has higher standard deviation compared to U [0, 1], and N (0, 1).
This property of the gamma distribution might be able to contribute in enhancing the ability
of the swarm to explore the search space better, and escape the local minima more effec-
tively. Another reason is that changing either of the parameters of the gamma distribution

A Particle Swarm Optimization Algorithm... 5

effectively changes how the random variates are chosen.

The relatively small random values generated by U(0, 1) may help in the ability of the
swarm to thoroughly search an area of the search space better. However, particles may be
susceptible to being trapped in a local minima. For the N (0, 1), having negative random
values may also help in the ability of the swarm to thoroughly search an area of the search
space better since it enables the particles to “go back” at an area it has previously visited.
However, particles may also be susceptible to being trapped in a local minima. The gamma
distribution showed that it generates random values that are large enough to help escape
being trapped compared to the previous two distributions, but also small enough as to
not “overshoot” outside the search space when compared to the outliers produced in a Lévy
distribution. It combines the best properties of all the distributions used in previous studies.

2 Gamma-based PSO Algorithm (GbPSO Algorithm)

This study will focus solely on the effects of changing the random distribution used in
the velocity update equation: from qn,dt , rn,dt ∼ U(0, 1) to γn,dt , βn,d

t ∼ Gamma(α, λ = 1).

In the initialization phase of the GbPSO, the particles’ initial position will be initialized
using a uniform distribution while V n,d

0 = 0, and Ln
0 = Xn,d

0 . The topology used is the star
topology. Since the initialization phase of the GbPSO is the same as the initialization phase
of the original PSO, the same probability space defined in Definition 2.1 is utilized and then
relate the positions, velocities, and attractors of the GbPSO algorithm as random variables
over the same probability space R.

Definition 2.1 (PSO Probability Space from [15]). The probability space R = (Ω,A, P)
is defined via

• Ω := [0, 1]∞

• A :=
⊗

N B([0, 1])

• P := L∞

where [0, 1]∞ = {(ω0, ω1, . . .)|ωi ∈ [0, 1]} for every i ∈ N is the space of all sequences

with values in [0, 1],
⊗

N B([0, 1]) is the product σ-field of countably many instances of

B([0, 1]) and L∞ is obtained from the corollary of the Ionesca-Tulcea Theorem by setting

(Ωi,Ai, Pi) = ([0, 1],B([0, 1]),L1).

Definition 2.2 (GbPSO Model). Let f : RD → R be the objective function. The swarm

S of size N of the Gamma-based PSO that moves through the D-dimensional search space

RD have the stochastic process defined as

S = (St)t∈N0
= ((Xt, Vt, Lt, Gt))t∈N0

= ((X0, V0, L0, G0).(X1, V1, L1, G1), . . .),

The stochastic process (St)t∈N0 is determined by the following movement update equations:

6 N. Alcantara, R. Addawe, J. Addawe

• Velocity update equation: V n,d
t+1 = w·V n,d

t +c1·γn,dt+1·(L
n,d
t −Xn,d

t)+c2·βn,d
t+1·(G

n,d
t −Xn,d

t)

for t ≥ 0;

• Position update equation: Xn,d
t+1 = Xn,d

t + V n,d
t+1 for t ≥ 0;

• Local best update equation: Ln
t+1 = argmin(Xn

t+1,L
n
t)
f ;

• Global best update equation: Gn+1
t = argmin(Ln

t+1,G
n
t)
f for t ≥ 0, 1 ≤ n ≤ N − 1; and

• G1
t+1 = argmin(LN

t+1,G
N
t)f for t ≥ 0.

In case of a tie when applying the update equation for the Ln and Gn, the new value

prevails. Additionally, if the obtained value is equal to Gn, then Gn is also updated. The

parameters w, c1, and c2 are the same constants along with the independently drawn random

numbers γn,dt , βn,d
t ∼ Gamma(α, 1).

The PSO algorithm relies on its movement update equations for the swarm to move
around the search space. Thus, the focus for the convergence analysis of the GbPSO will
be the behaviour of the velocity update equation.

Following the techniques in [6] and [19], velocity update equation needs to be first
transformed into a non-homogeneous recurrence relation:

Xn,d
t+1 =

[
1 + w − (c1 · γn,dt+1 + c2 · βn,d

t+1)
]
·Xn,d

t − w ·Xn,d
t−1

+ c1 · γn,dt+1 · L
n,d
t + c2 · βn,d

t+1 ·G
n,d
t .

(5)

Since the swarm is composed of n particles that are employed in a D-dimension contin-
uous search space, it is far better to narrow down the analysis by focusing only on a single
particle of the swarm.

2.1 1-Particle 1-Dimension Swarm Model

Let f be a function that is to be minimized using GbPSO algorithm with the swarm S
with size N in a D-dimensional continuous search space. Assume that at a discrete number
of iteration, Ln

t and Gn
t are constant such that Ln

t =: Ln and Gn
t =: G.

The stochastic process of the swarm during this discrete time T is ((Xt, Vt))t∈T . All
particles in S now evolve independently. Also, each dimension is updated independently
from others. Thus, ((Xn1,d1

t , V n1,d1

t))t∈T and ((Xn2,d2

t , V n2,d2

t))t∈T are independent of each
other if n1 ̸= n2 or d1 ̸= d2. It is then sufficient to study just one of these processes, or
equivalently, study a 1-particle, 1-dimension model. The movement update equations, and
the corresponding non-homogeneous recurrence relation in equation (5) can be written as

Vt+1 = w · Vt + c1 · γt+1 · (L−Xt) + c2 · βt+1 · (G−Xt), (6)

Xt+1 = Xt + Vt+1, (7)

Xt+1 = [1 + w − (c1 · γt+1 + c2 · βt+1)] ·Xt − w ·Xt−1 + c1 · γt+1 · L+ c2 · βt+1 ·G. (8)

A Particle Swarm Optimization Algorithm... 7

The 1-particle swarm model produces the trajectory of the single particle using the
movement update equations and that the sequence of points in the search space that plots
the trajectory of the single particle are random variables related to the stochastic process
((Xt, Vt))t∈T . The random variables generated by equation (8) can be regarded as the
sequence of random variables, {Xt}. This sequence is considered as an iterative method.
Thus, convergence of {Xt} is the convergence of the stochastic process ((Xt, Vt))t∈T , and
by extension, convergence of the 1-particle 1-dimension swarm model.

3 Convergence Analysis of the GbPSO

Convergence analysis will be first applied to the 1-particle 1-dimension swarm model with
L and G as constants to find the interval of the parameters in the tuple {w, c1, c2, α, λ =
1} where the behaviour of the swarm converges. Next, assumption of L being constant
is removed and the convergence property of the particle is analysed. The N -particle D-
dimensional swarm will be recalled and the results obtained in the previous analysis will be
applied to it. The techniques used in proving the convergence property of the swarm are
derived from the approach in [6].

Definition 3.1 (Swarm Convergence). Swarm S converges if there is almost surely a point

z such that the following two conditions hold:

1. limt→∞ Var(Xn
t) = 0 for each n ∈ {1, . . . , N}, the variance of the particles tend to

zero;

2. limt→∞ E(Xn
t) = z for each n ∈ {1, . . . , N}, the expectation of every particle moves

towards z.

This is akin to the convergence in mean square of random variables.

From Definition 3.1, the iteration equation (8) needs to satisfy two conditions: (1) ex-
pectation of the iteration equation moves toward a particular point in the search space; and
(2) variance of the same equation tends towards zero.

Using the definition of expectation, equation (8), and λ = 1 for the standard gamma
distribution, the iteration equation of the expectation of the particle’s position is

E[Xt+1] = [1 + w − (α(c1 + c2))] · E[Xt]− w · E[Xt−1] + α (c1 · L+ c2 ·G) , (9)

Theorem 3.2. Given parameters w ≥ 0 and c1, c2, α > 0, the iterative method {E[Xt]t∈T }
is guaranteed to converge to c1·L+c2·G

c1+c2
if and only if 0 ≤ w < 1 and 0 < c1 + c2 <

2(w+1)
α .

Proof. In the case of the standard PSO where γt+1, βt+1 ∼ U(0, 1), [6] obtained the following

recurrence relation for the expected values:

E[Xt+1] =

(
1 + w − c1 + c2

2

)
E[Xt]− wE[Xt−1] +

1

2
(c1L+ c2G). (10)

8 N. Alcantara, R. Addawe, J. Addawe

If the random variables γt+1, βt+1 are both chosen in the same distribution with mean

µ̂, then the recurrence relation is

E[Xt+1] = (1 + w − µ(c1 + c2)) E[Xt]− wE[Xt−1] + µ(c1L+ c2G). (11)

Replacing the parameters (c1, c2) in Equation (10) by (2µ̂c1, 2µ̂c2) leads to Equation

(11). With this transformation, the results for Equation (10) stated in [6] can be applied

immediately to Equation (11). The sequence of expected values {E[Xt]} will converge to

the same limit since
2µ̂c1L+ 2µ̂c2G

2µ̂c1 + 2µ̂c2
=
c1L+ c2G

c1 + c2
,

provided that the following transformed stability conditions hold:

0 ≤ w ≤ 1 and

(
0 < 2µ̂c1 + 2µ̂c2 < 4(w + 1) ⇐⇒ 0 < c1 + c2 <

2(w + 1)

µ̂

)
. (12)

In the case where the random values are drawn from the gamma distribution, γt+1, βt+1 ∼
Γ(α, λ), then we have µ̂ = α

λ and the second inequality in the stability condition (12) be-

comes

0 < c1 + c2 <
2λ(w + 1)

α
, (13)

which proves the theorem. It can also be noted that this condition is invariant, or that it

remains unchanged, under scaling of parameters in the gamma distribution. That is, the

same stability conditions hold for Γ(α, λ) and Γ(cα, cλ) for any constant c > 0.

Theorem 3.3. Given the parameters w ≥ 0 and c1, c2, α > 0, iterative method {Var[Xt]}t∈T

is guaranteed to converge to

V X =
2α

(
c1c2
c1+c2

)2

(G− L)2(1 + w)

h(1)
, (14)

where

h(1) = [−2α(c1 + c2)]w
2 +

[
α2(c1 + c2)

2 − α(c21 + c22)
]
w

+ α
[
2(c1 + c2)− α(c1 + c2)

2 − (c21 + c22)
]
> 0.

if and only if 0 ≤ w < 1, c1 + c2 > 0, and h(1) > 0 are all satisfied together.

Proof. It was previously shown that the sequence of expected values {E[Xt]} will converge

to the same limit c1L+c2G
c1+c2

provided that the applicable stability conditions hold. Consider

a random variable Zt = Xt − µ, where µ = c1L+c2G
c1+c2

. The iteration sequence for Zt can be

written as

Zt+1 = [1 + w − (c1 · γt+1 + c2 · βt+1)] · Zt −w · Zt−1 +
c1c2
c1 + c2

(G− L)(βt+1 − γt+1). (15)

A Particle Swarm Optimization Algorithm... 9

In the case where γt+1, βt+1 ∼ U(0, 1), [6] obtained

Zt+1 = (ψ −Rt) · Zt − w · Zt−1 +Qt, (16)

where ν = c1+c2
2 , ψ = 1 + w − ν, Rt = c1γt+1 + c2βt+1 − ν, and Qt = c1c2

c1+c2
(βt+1 −

γt+1)(G − L). Also, E[Rt] = E[Qt] = 0; Var[Rt] = E[R2
t] =

1
12 (c

2
1 + c22) = R; Var[Qt] =

E[Q2
t] =

1
6

(
c1c2
c1+c2

)2

(G − L)2 = Q; and E[RtQt] =
c1c2(c2−c1)
12(c1+c2)

(G − L) = T . By algebraic

manipulations, [6] derived the iteration equation of {Var[Xt]t∈T }

Var[Xt+2] =(ψ2 +R− w)Var[Xt+1]− w(ψ2 −R− w)Var[Xt] + w3Var[Xt−1]

+R
[
(E[Xt+1]− µ)2 + (E[Xt]− µ)2

]
+Q(1 + w)− 2T [(E[Xt+1]− µ)

+w(E[Xt]− µ)] ,

(17)

and characteristic equation

I3 − (ψ2 +R− w)I2 + w(ψ2 −R− w)I − w3 = 0. (18)

This characteristic equation is subjected to an eigenvalue analysis in [6] where h(I) =

I3− (ψ2+R−w)I2+w(ψ2−R−w)I−w3, such that h(1) > 0 is proven to be the necessary

and sufficient condition for the convergent condition whenever 0 ≤ w < 1, and c1 + c2 > 0

are satisfied.

Next, [6] computed the value of h(1) to be

h(1) = −2

(
c1 + c2

2

)
w2 +

[(
c1 + c2

2

)2

− 1

12
(c21 + c22)

]
+ 2

(
c1 + c2

2

)
−
(
c1 + c2

2

)2

− 1

12
(c21 + c22)

= −(c1 + c2)w
2 +

(
1

6
c21 +

1

6
c22 +

1

2
c1c2

)
w + c1 + c2 −

1

3
c21 −

1

3
c22 −

1

2
c1c2 > 0,

(19)

and that the sequence of variance {Var[Xt]} will converge to

V X =

1
6

(
c1c2
c1+c2

)2

(G− L)2(1 + w)

h(1)
, (20)

where h(1) is in Equation (19), and that the following stability conditions hold:

0 ≤ w < 1, c1 + c2 > 0, and h(1) > 0. (21)

If the random variable γt+1, βt+1 are chosen in the same distribution with mean µ̂,

and variance σ̂, then following the process outlined earlier, the iteration sequence for the

10 N. Alcantara, R. Addawe, J. Addawe

random variable Zt would be the same as in Equation (16), with ν = µ̂(c1+c2), ψ = 1+w−ν,
Rt = c1γt+1 + c2βt+1 − ν, and Qt =

c1c2
c1+c2

(βt+1 − γt+1)(G − L). Also, E[Rt] = E[Qt] = 0;

Var[Rt] = E[R2
t] = σ̂(c21 + c22) = R; Var[Qt] = E[Q2

t] = 2σ̂
(

c1c2
c1+c2

)2

(G − L)2 = Q; and

E[RtQt] =
σ̂c1c2(c2−c1)

c1+c2
(G− L) = T .

The iteration equation for {Var[Xt]} and the characteristic equation are the same

from Equations (17), and (18), respectively. Since the characteristic equation is the same,

then the same results follow: h(1) > 0 is the necessary and sufficient condition for the con-

vergent condition whenever 0 ≤ w < 1, and c1 + c2 > 0 are satisfied.

Next, the value of h(1) would be

h(1) = (−2σ̂(c1 + c2))w
2+

[
(µ̂(c1 + c2))

2
+ σ̂(c21 + c22)

]
+ 2µ̂(c1 + c2)− (µ̂(c1 + c2))

2 − σ̂(c21 + c22),
(22)

and that the sequence of variance {Var[Xt]} will converge to

V X =
2σ̂

(
c1c2
c1+c2

)2

(G− L)2(1 + w)

h(1)
, (23)

where h(1) is in Equation (22), and provided that the same stability conditions stated in

(21) hold.

Note that replacing the terms ν = c1+c2
2 , R = 1

12 (c
2
1 + c22), and Q = 1

6

(
c1c2
c1+c2

)2

(G−
L)2 from the results obtained in [6] by the terms ν = µ̂(c1 + c2), R = σ̂(c21 + c22), and

Q = 2σ̂
(

c1c2
c1+c2

)2

(G− L)2, Equation (19) leads to Equation (22), and the sequence of vari-

ance {Var[Xt]} will converge to the same limit.

In the particular case where γt+1, βt+1 ∼ Γ(α, 1), we have µ̂ = α, σ̂ = α, and

V X =
2α

(
c1c2
c1+c2

)2

(G− L)2(1 + w)

h(1)
,

where

h(1) = [−2α(c1 + c2)]w
2 +

[
α2(c1 + c2)

2 − α(c21 + c22)
]
w

+ α
[
2(c1 + c2)− α(c1 + c2)

2 − (c21 + c22)
]
.

A Particle Swarm Optimization Algorithm... 11

The earlier theorems only considered the 1-particle 1-dimension swarm simplification,
with the restriction of fixed local and global attractors. In the succeeding theorems, the
restriction of fixed local attractor is removed while the global attractor will still remain
constant. The relationship between the local and global attractor is defined in the following
theorem.

Theorem 3.4. Given w ≥ 0, c1, c2, α > 0, if the iterative method {Var[Xt]}t∈T is guar-

anteed to converge and h(1) < 2αc22(w + 1), then the iterative method {Lt} will converge

almost surely to G.

Proof. As defined by the probability space in Definition 2.1, Lt is a random variable, and

that Lt+1 depends on Lt where Lt+1 is always an improvement of its predecessor. Thus,

{Lt} is an iterative method.

Suppose that {Var[Xt]}t∈T is guaranteed to converge. This implies that {E[Xt]}t∈T

also converges. Thus, the random particle Xt will converge with expectation and variance

presented in equations (13) and (14), respectively. No matter the value of Lt, if h(1) <

2αc22(w + 1), then

Var[G] = E[(G− EX)2] =

(
c1

c1 + c2

)2

(G− L)2 < VX.

Hence, P (Xt = G) > 0, which leads directly to P (limt→∞ Lt = G) = 1. It is then evident

that {Lt} converges almost surely to G. It should be noted that the condition h(1) <

2αc22(w + 1) is only a sufficient condition to ensure convergence.

The original N -particle D-dimension Gamma-based PSO system is recalled. The
value of Ln,d

t and Gn,d
t are being constantly updated as the system converges toward an

optimum. From the analysis, Ln,d
t will evolve towards Gn,d

t when the latter is fixed un-

der certain conditions. In the event that Gn,d changes, then Ln,d
t will evolve to the new

global attractor. For the convergence property of the GbPSO, the following theorem can be
obtained.

Theorem 3.5. Given w ≥ 0, c1, c2, α > 0, if 0 ≤ w < 1, c1 + c2 > 0, and 0 < h(1) <

2αc22(w + 1) are all satisfied together, the Gamma-based PSO system determined by the

parameter tuple {w, c1, c2, α, λ = 1} will converge.

Proof. From the results of Theorems (3.2) and (3.3), given the parameters w ≥ 0, c1, c2, α >

0, if the local attractor and the global attractor are kept constant during a discrete time T ,

then if 0 ≤ w < 1, c1 + c2 > 0, and h(1) > 0 are all satisfied together, then for particle n in

every dimension d

{E[Xn,d
t]}t∈T → c1L

n,d + c2G
d

c1 + c2
and {Var[Xn,d

t]}t∈T →
2α

(
c1c2
c1+c2

)2

(Gd − Ln,d)2(1 + w)

h(1)
.

12 N. Alcantara, R. Addawe, J. Addawe

From the velocity and position update equations, each dimension of particle n is

independently updated from others.

{E[Xn
t]}t∈T → c1L

n + c2G

c1 + c2
and {Var[Xn

t]}t∈T →
2α

(
c1c2
c1+c2

)2

(G− Ln)2(1 + w)

h(1)
.

From the results of Theorem (3.4), if h(1) < 2αc22(w + 1), then each local attractor

converges almost surely to the global attractor. Thus, in the event that L = G:

{E[Xn
t]}t∈T → G and {Var[Xn

t]}t∈T → 0.

From Definition (3.1), each sequence {Xt} will stochastically evolve toward G until

it converges in mean square to G. Since this applies to every particle in the swarm, it

can be concluded that the Gamma-based PSO swarm determined by the parameter tuple

{w, c1, c2, α, λ = 1} will converge to the global attractor G.

The analysis shown for the convergence of the GbPSO algorithm only affirm that
each particle in the swarm would converge in mean square to the best position found by the
swarm so far (G). However, this does not mean that this convergent position is the optimal
one, or even a local optimal one.

4 Experimental Results

This study used the extensible research toolkit for the PSO called PySwarms developed
using the Python programming language [9] to devise the GbPSO algorithm. It is then used
to optimize some commonly used benchmark functions presented in Table 2.

Function

Name

Test

Function

Search

Space

Particle

Bound

Best

Solution

Best

Result

Sphere f1(x) =
∑d

i=1 x2
i [−100, 100] [−100, 100] [0, · · · , 0] 0

Schaffer N.2 f2(x) = 0.5 +
sin2(x2

1−x2
2)−0.5[

1+0.001(x2
1+x2

2)
]2 [−100, 100] [−100, 100] [0, 0] 0

Three-hump Camel f3(x) = 2x2
1 − 1.05x4

1 +
x6
1
6

+ x1x2 + x2
2 [−5, 5] [−5, 5] [0, 0] 0

Rastrigin f4(x) = 10d +
∑d

i=1

[
x2
i − 10 cos(2πxi)

]
[−5.12, 5.12] [−5.12, 5.12] [0, · · · , 0] 0

Rosenbrock f5(x) =
∑d−1

i=1

[
100(xi+1 − x2

i)2 + (1 − xi)
2
]

[−30, 30] [−30, 30] [1, · · · , 1] 0

Table 2: Benchmark Functions

These five well-known benchmark functions are a combination of unimodal (sphere,
and Schaffer N.2), and multimodal (Rastrigin, Rosenbrock, and Three-hump Camel) func-
tions. It is possible to test the exploitation capability of the proposed algorithm using
unimodal functions. Meanwhile, the multimodal functions used are difficult to optimize
because they have several local minima, which can trap the particles in the swarm, and
produce premature convergence.

In all parts of the experiment, the following parameters are set to be the same for
each benchmark function until otherwise stated: (1) number of particles is N = 100; (2)
dimension of the search space is D = 2; and (3) maximum number of function evaluations

A Particle Swarm Optimization Algorithm... 13

is 10,000. The results of all experiments are averaged over 30 independent runs to eliminate
random discrepancy, while the initial position of each particle are randomly drawn from
U [−B,B]2 using the same seed, where B is the search space bound stated in each benchmark
function, and the initial velocity of each particle is set to zero. The researchers consider
particles to have converged to a particular region whenever the worst particle is within a
tolerance value of 1× 10−5 of the best particle in terms of cost value.

4.1 Effects of Different w and α values on the GbPSO

This experiment numerically validates the results in the convergence analysis. The pa-
rameter values of the algorithm were computed according to the equation below, with c1 = c2

c =

[
round off

(
1− w2

1
2w + α+ 1

2 − αw

)]
− 0.05. (24)

The aim of this part of the experiment is to identify the effect of different values of
w and α to the overall performance of the GbPSO in a setting beneficial to it. Table (3)
shows the different combinations used in this experiment.

Shape

Parameter (α)

Inertia weight (w)

0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

1.00 0.1310 0.2773 0.3935 0.6000 0.5500 0.5962 0.6241 0.6357 0.6328 0.6167

1.50 0.1227 0.2500 0.3423 0.4071 0.4500 0.4750 0.4853 0.4833 0.4711 0.4500

2.00 0.1152 0.2269 0.3017 0.3500 0.3786 0.3921 0.3939 0.3864 0.3713 0.3500

2.50 0.1083 0.2071 0.2688 0.3056 0.3250 0.3318 0.3292 0.3192 0.3036 0.2833

3.00 0.1020 0.1900 0.2414 0.2700 0.2833 0.2860 0.2809 0.2700 0.2546 0.2357

3.50 0.0962 0.1750 0.2184 0.2409 0.2500 0.2500 0.2435 0.2324 0.2176 0.2000

4.00 0.0907 0.1618 0.1988 0.2167 0.2227 0.2210 0.2138 0.2026 0.1886 0.1722

4.50 0.0857 0.1500 0.1818 0.1962 0.2000 0.1971 0.1895 0.1786 0.1652 0.1500

5.00 0.0810 0.1395 0.1670 0.1786 0.1808 0.1770 0.1693 0.1587 0.1460 0.1318

Table 3: Different parameter combinations for the GbPSO

The termination condition for this part will be: (i) If at least one particle managed to
find the global optima, and when the worst performing particle is within the aforementioned
tolerance value; or (ii) when the maximum number of fitness evaluations set in advance is
reached. These will allow the swarm to show its ability to escape premature convergence
and find the global minimum.

4.1.1 Simulation Results

The first criteria tested presents the exploration-exploitation capability of the algorithm
and its ability to escape local minima. An optimization run is successful whenever the al-
gorithm obtained the optimal solution and converged to it, otherwise, it is a failed run. In
the event of a failed run, performance is measured based on the proximity of the obtained
value to the optimal value.

For the Schaffer N.2 and Rastrigin functions, 100% of the parameter combinations
had successful runs in both functions in all 30 independent runs. For the Sphere function,
96.67% of all parameter combinations succeeded in all their runs. For the remaining 3.33%,

14 N. Alcantara, R. Addawe, J. Addawe

1.11% failed in all its runs while 2.22% failed in some of their optimization runs. For the
Three-hump Camel function, similar observations to the Sphere function can be noted in the
results: 96.67% of all parameter combinations succeeded in all their runs. For the remaining
3.33%, 1.11% failed in all its runs while 2.22% failed in some of their optimization runs. For
the Rosenbrock function, 87.78% of all parameter combinations succeeded in all their runs.
The remaining 12.22% failed in some of their runs.

The results show that the algorithm has the ability to find the global minima and
converge to it, along with its ability to escape local minima which can be observed in its
performance in the Rastrigin function - a function that has several local minima that are
regularly distributed from each other.

The second criteria shows how fast the swarm converges to the global minimum. The
convergence velocity of every run of each parameter combination were averaged. Parameter
combinations which failed in some or all of their runs were excluded when identifying the
fastest converging combination.

The observations regarding the convergence velocity of the algorithm can be loosely
generalized as follows: (1) For parameter combinations grouped according to their α, as
w decreases, the number of iterations needed to find the global optima also decreases as
seen in Figure 1; and (2) For parameter combinations grouped according to their w, as α
increases, the number of iterations needed to find the global optima decreases as seen in
Figure 2. Also, it should be mentioned that there are exceptions to these observations on
some of the benchmark functions.

4.2 Comparison between GbPSO and WCPSO

The same experiment was also done using the standard PSO with parameter combina-
tions taken in the literature, namely, WC1: c1 = c2 = 1.49617, w = 0.72984 [2]; WC2:
c1 = 2.04355, c2 = 0.9487, w = 0.72984 [1]; WC3: c1 = c2 = 1.7, w = 0.6 [18], to determine
the best performing combination and compare it to the best performing combination of the
GbPSO.

The best performing parameter combination of the GbPSO for each benchmark func-
tion based on the two criteria is as follows: GbPSO(4.50, 0.0) for Sphere, GbPSO(4.0, 0.2)
for Schaffer N.2, GbPSO(4.0, 0.0) for Three-hump Camel, GbPSO(1.0, 0.1) for Rastrigin,
and GbPSO(4.50, 0.2) for Rosenbrock function. Meanwhile, WC3 is the best performing
parameter combination for the standard PSO in all benchmark functions used.

Comparison was done using the same criteria in Part 1. However, the number of
independent runs will be 30/50/100, and swarm sizes will be 100/200/1000. The termina-
tion criteria for this phase is also different: (i) If the worst performing particle is within
the aforementioned tolerance value from the best performing particle of the swarm; and (ii)
when the maximum number of fitness evaluations set in advance is reached.

The termination conditions were modified for this part in order to simulate real-
world problem optimization and to show how likely the GbPSO and the standard PSO may
prematurely converge to a point in the search space with respect to the tolerance value.
For this part, an optimization run is successful whenever the algorithm managed to find the

A Particle Swarm Optimization Algorithm... 15

(a) Sphere (b) Schaffer No. 2

(c) Threehump Camel (d) Rastrigin

(e) Rosenbrock

Figure 1: Average convergence velocity of all parameters with respect to their α in all

benchmark functions

optimal value and converge to it. Failure means that the algorithm either did not find the
optimal value and converged prematurely on any point in the search space, or the maximum
number of iterations were exhausted without the swarm converging.

4.2.1 Simulation Results

Success Rates. As indicated in Table 4, both algorithms failed to converged to the optimal
value in the Sphere and Three-hump Camel functions in all the different combinations of
runs and swarm sizes. This result is completely different for the Schaffer N.2 and Rastrigin
functions where both algorithms have 100% success rates in all the different runs and swarm
sizes. For the Rosenbrock function, both algorithms have a 100% success rate in converging
in all the different runs when the swarm size is 1000 particles. However, this decreases to
approximately half in the runs with a swarm size of 200 particles, and further decreases to
about 5%− 10% in the runs with a swarm size of 100 particles. This “decrease in successful
runs as the population size decreases” behaviour observed in both algorithms is only notice-

16 N. Alcantara, R. Addawe, J. Addawe

(a) Sphere (b) Schaffer No. 2

(c) Threehump Camel (d) Rastrigin

(e) Rosenbrock

Figure 2: Average convergence velocity of all parameters with respect to their w in all

benchmark functions

able in the Rosenbrock function.

Comparing the success rates of both algorithms in the Rosenbrock function, standard
PSO is more likely to converge to the optimal value than the GbPSO in all the other different
combinations of runs and swarm sizes, except in the combination of 30 runs/200 particles.
However, their difference can be considered minimal: 19 successes out of 30 runs for the
GbPSO compared to 18 successes out of 30 runs for the WCPSO.

Average Cost Value. In terms of average cost value for functions where both algorithms
failed to converge to the optimal value, both showed the behaviour where the average cost
value improves (decreases) as the swarm size increases. Also, the standard PSO outper-
formed the GbPSO in terms of average cost value in all combinations of runs and swarm
sizes with some exceptions: 50 runs/1000 particles, and 100 runs/1000 particles. However,
the difference between the average cost value obtained by both algorithms is relatively small.
The summary of the average cost values obtained are presented in Table 5.

A Particle Swarm Optimization Algorithm... 17

Function
Runs 30 50 100

Size 100 200 1000 100 200 1000 100 200 1000

Sphere
GbPSO 0% 0% 0% 0% 0% 0% 0% 0% 0%

WC3 0% 0% 0% 0% 0% 0% 0% 0% 0%

Schaffer N2
GbPSO 100% 100% 100% 100% 100% 100% 100% 100% 100%

WC3 100% 100% 100% 100% 100% 100% 100% 100% 100%

Three-hump
GbPSO 0% 0% 0% 0% 0% 0% 0% 0% 0%

WC3 0% 0% 0% 0% 0% 0% 0% 0% 0%

Rastrigin
GbPSO 100% 100% 100% 100% 100% 100% 100% 100% 100%

WC3 100% 100% 100% 100% 100% 100% 100% 100% 100%

Rosenbrock
GbPSO 0% 63.33% 100% 2% 42% 100% 8% 50% 100%

WC3 6.67% 60% 100% 10% 60% 100% 13% 63% 100%

Table 4: Comparison between GbPSO and standard PSO: Success Rates

Function
Runs 30 50 100

Size 100 200 1000 100 200 1000 100 200 1000

Sphere
GbPSO 9.79E-12 8.13E-14 8.48E-18 1.58E-11 2.79E-14 1.25E-17 1.11E-11 8.20E-14 6.50E-18

WCPSO 1.76E-15 1.48E-18 1.29E-22 3.46E-16 4.03E-18 3.95E-22 2.03E-15 6.78E-18 4.90E-22

Schaffer N2
GbPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

WCPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Three-hump
GbPSO 2.40E-12 9.77E-15 8.42E-24 4.04E-12 2.90E-15 6.06E-23 7.21E-13 1.79E-14 9.98E-23

WCPSO 2.43E-16 1.48E-17 2.32E-21 1.73E-15 1.34E-16 1.45E-21 5.70E-16 3.75E-17 1.38E-21

Rastrigin
GbPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

WCPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rosenbrock
GbPSO 5.49E-19 6.76E-26 0.0 1.48E-18 5.21E-28 0.0 8.26E-17 8.73E-26 0.0

WCPSO 1.04E-23 1.02E-26 0.0 2.46E-22 5.60E-29 0.0 6.10E-23 2.13E-28 0.0

Table 5: Average cost values for functions where GbPSO and standard PSO failed to con-

verge to optimal value

Average Convergence Velocity. In terms of average convergence velocity for their
successful runs in the Schaffer N.2, and Rastrigin functions, both algorithms showed that as
the swarm size increases, the average convergence velocity also increases as seen in Figures
3, and 4 for the Schaffer N.2, and Rastrigin functions, respectively. Since more particles are
present in the swarm, more iterations are needed for all of them to converge to a particular
point in the search space. This observation is true in all the varying runs used in both
algorithms. Another observation that is true in both Schaffer N.2 and Rastrigin functions
is that the GbPSO is faster to converge to the optimal value than the standard PSO.

18 N. Alcantara, R. Addawe, J. Addawe

(a) Average conver-

gence velocity in 30

runs

(b) Average conver-

gence velocity in 50

runs

(c) Average conver-

gence velocity in 100

runs

Figure 3: Average convergence velocity in all runs and population size - Schaffer N.2

(a) Average conver-

gence velocity in 30

runs

(b) Average conver-

gence velocity in 50

runs

(c) Average conver-

gence velocity in 100

runs

Figure 4: Average convergence velocity in all runs and population size - Rastrigin

For the Rosenbrock function, the observation regarding the relationship in the be-
haviour of the average convergence velocity and the swarm size can still be considered true
for runs with more than a 20% success rate. Average convergence velocity of the GbPSO in
this function is still lower than that of the standard PSO. These observations are presented
in Figure 5.

(a) Average conver-

gence velocity in 30

runs

(b) Average conver-

gence velocity in 50

runs

(c) Average conver-

gence velocity in 100

runs

Figure 5: Average convergence velocity in all runs and population size - Rosenbrock

A Particle Swarm Optimization Algorithm... 19

For the Sphere and Three-hump Camel functions where both algorithms failed to
converge to the optimal value, the GbPSO converges to a point in the search space faster than
the standard PSO, with higher particle count runs also having higher number of iterations
needed to converge to that point.

(a) Average Itera-

tions (Failure) in 30

runs

(b) Average Itera-

tions (Failure) in 30

runs in 50 runs

(c) Average Itera-

tions (Failure) in 30

runs in 100 runs

Figure 6: Average Iterations (Failure) in 30 runs in all runs and population size - Sphere

(a) Average Itera-

tions (Failure) in 30

runs

(b) Average Itera-

tions (Failure) in 30

runs in 50 runs

(c) Average Itera-

tions (Failure) in 30

runs in 100 runs

Figure 7: Average Iterations (Failure) in 30 runs in all runs and population size - Three-

hump Camel

(a) Average Itera-

tions (Failure) in 30

runs

(b) Average Itera-

tions (Failure) in 30

runs in 50 runs

(c) Average Itera-

tions (Failure) in 30

runs in 100 runs

Figure 8: Average Iterations (Failure) in 30 runs in all runs and population size - Rosenbrock

20 N. Alcantara, R. Addawe, J. Addawe

4.3 Summary of Experimental Results

There were two numerical simulations done in this study. The first experiment numeri-
cally validates the results of the convergence analysis. It identified the effects of changing the
values of w and α in the performance of the GbPSO in terms of its exploration-exploitation
ability, and how fast the swarm converges to the global minimum. Successful and failed
runs were observed on each parameter combinations, on each benchmark functions tested.
Said results were summarized in Table 6.

For the second criteria, two observations were noted: (1) when parameter combina-
tions are grouped according to their α, the number of iterations needed to find the global
optima decreases as w decreases; and (2) when parameter combinations grouped accord-
ing to their w, the number of iterations needed to find the global optima decreases as α
increases. These observations have exceptions on some of the benchmark functions.

Benchmark

Function

Runs = 30

Success (all runs) Success (some runs) Failure (all runs)

Sphere 96.67 2.22 1.11

Schaffer N.2 100 - -

Three-Hump 96.67 2.22 1.11

Rastrigin 100 - -

Rosenbrock 87.78 - 12.22

Table 6: Success rates of the different parameter combinations of GbPSO

For the second experiment, the GbPSO and WCPSO were compared in terms their
success rates in finding the global optima, average cost value, and average convergence
velocity in the same benchmark functions used in the first experiment. In terms of their
success rates in finding the global optima, both algorithms performed the same in all the
functions - succeeded in the Schaffer N.2 and Rastrigin; failed in the Sphere and Three-
hump Camel. For the Rosenbrock function, the WCPSO had a higher success rate than the
GbPSO.

Functions where both algorithms failed to converge (Sphere and Three-hump Camel),
the average cost value of both algorithms were compared. Both algorithms showed the
behaviour where the average cost value improves as the swarm size increases. However,
the GbPSO exhibited inferior average cost value compared to the WCPSO, albeit with a
relatively small difference.

In terms of their average convergence velocity, the GbPSO managed to converged
faster to the optimal value of Schaffer N.2 and Rastrigin functions compared to the WCPSO.
For the remaining functions, the GbPSO still converged to a point faster than the WCPSO.

5 Conclusion

In this study, an alternative particle swarm optimization (PSO) algorithm (called Gamma-
based PSO or GbPSO) was developed by replacing the probability distribution used in its
velocity update equation - from U(0, 1) to the standard gamma distribution. This simple
change was motivated by the studies of [4, 8, 14] to take advantage of the innate properties
of the N (0, 1) distribution (larger standard deviation than uniform distribution) and Lévy

A Particle Swarm Optimization Algorithm... 21

distribution (fatter tails than a Gaussian distribution) to alleviate one of the weakness of
the standard PSO in its inability to escape local minima.

A mathematical model of the GbPSO was also introduced and defined using tech-
niques in [15]. This model was transformed to a 1-particle 1-dimension swarm to analytically
show that the GbPSO has the ability to converge to a point in the search space whenever its
parameters were chosen according to a set of guidelines presented and proven throughout
the study. To further test the results of the convergence analysis, numerical simulations
were done. Said simulations showed positive results, with a majority of the parameter
combinations used successfully obtaining the optimal value for a number of the benchmark
functions. The best performing parameter combinations were then compared to the stan-
dard PSO, with its parameters taken from the literature. Results of this comparison showed
that the GbPSO outperformed the standard PSO in all of the benchmark functions in terms
of their convergence velocity. However, the WCPSO outperformed the GbPSO in terms of
average cost value, and percentage of successful runs.

References

[1] Anthony Carlisle and Gerry Dozier. “An off-the-shelf pso”. In: Proceeding of Workshop

on Particle Swarm Optimization. 2001.

[2] M. Clerc and J. Kennedy. “The particle swarm - explosion, stability, and convergence

in a multidimensional complex space”. In: IEEE Transactions on Evolutionary Com-

putation 6.1 (2002), pp. 58–73. doi: 10.1109/4235.985692.

[3] Maurice Clerc. “Standard Particle Swarm Optimisation”. 15 pages. Sept. 2012. url:

https://hal.archives-ouvertes.fr/hal-00764996.

[4] Hou-Ping Dai, Dong-Dong Chen, and Zhou-Shun Zheng. “Effects of Random Values

for Particle Swarm Optimization Algorithm”. In: Algorithms 11.3 (2018), p. 23. issn:

1999-4893. doi: 10.3390/a11020023.

[5] F. Heppner and U. Grenander. “A stochastic nonlinear model for coordinated bird

flocks”. In: The ubiquity of chaos. Ed. by Saul Krasner. Washington, USA: AAAS,

1990, pp. 233–238.

[6] M. Jiang, Y.P. Luo, and S.Y. Yang. “Stochastic convergence analysis and parameter

selection of the standard particle swarm optimization algorithm”. In: Information

Processing Letters 102.1 (2007), pp. 8–16. issn: 0020-0190. doi: https://doi.org/

10.1016/j.ipl.2006.10.005. url: https://www.sciencedirect.com/science/

article/pii/S0020019006003103.

22 N. Alcantara, R. Addawe, J. Addawe

[7] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In: Proceedings

of IEEE International Conference on Neural Networks IV (1995), pp. 1942–1948. doi:

10.1109/icnn.1995.488968.

[8] Renato A. Krohling. “Gaussian swarm: a novel particle swarm optimization algo-

rithm”. In: IEEE Conference on Cybernetics and Intelligent Systems, 2004. Vol. 1.

2004, 372–376 vol.1. doi: 10.1109/ICCIS.2004.1460443.

[9] Lester James VMiranda, Aaron Moser, and Siobhán K Cronin.Welcome to PySwarms’s

documentation! Available at https://pyswarms.readthedocs.io/en/latest/index.html.

Date accessed: Jun. 2019. url: https://pyswarms.readthedocs.io/en/latest/

index.html.

[10] E. Ozcan and C.K. Mohan. “Particle swarm optimization: surfing the waves”. In:

Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.

99TH8406). Vol. 3. 1999, 1939–1944 Vol. 3. doi: 10.1109/CEC.1999.785510.

[11] M.E.H. Pedersen.Good Parameters for Particle Swarm Optimization. Tech. rep. HL1001.

Hvass Laboratories, 2010.

[12] Riccardo Poli. “Analysis of the Publications on the Applications of Particle Swarm

Optimisation”. In: Journal of Artificial Evolution and Applications 2008 (Feb. 2008),

p. 10. doi: 10.1155/2008/685175.

[13] Riccardo Poli, James Kennedy, and Tim Blackwell. “Particle Swarm Optimization: An

Overview”. In: Swarm Intelligence 1 (Oct. 2007). doi: 10.1007/s11721-007-0002-0.

[14] T.J. Richer and T.M. Blackwell. “The Lévy Particle Swarm”. In: 2006 IEEE Inter-

national Conference on Evolutionary Computation. 2006, pp. 808–815. doi: 10.1109/

CEC.2006.1688394.

[15] Berthold Immanuel Schmitt. “Convergence Analysis for Particle Swarm Optimiza-

tion”. PhD thesis. FAU University Press, 2015.

[16] Yuhui Shi and Russell Eberhart. “A modified particle swarm optimizer”. In: 1998

IEEE International Conference on Evolutionary Computation Proceedings. IEEE World

Congress on Computational Intelligence (Cat. No.98TH8360) (1998), pp. 69–73. doi:

10.1109/ICEC.1998.699146.

[17] Radha Thangaraj, Millie Pant, and Kusum Deep. “Initializing PSO with probability

distributions and low-discrepancy sequences: The comparative results”. In: 2009 World

Congress on Nature Biologically Inspired Computing (NaBIC). 2009, pp. 1121–1126.

doi: 10.1109/NABIC.2009.5393814.

A Particle Swarm Optimization Algorithm... 23

[18] Ioan Cristian Trelea. “The particle swarm optimization algorithm: convergence analy-

sis and parameter selection”. In: Information Processing Letters 85.6 (2003), pp. 317–

325. issn: 0020-0190. doi: https://doi.org/10.1016/S0020-0190(02)00447-7.

[19] Frans Van Den Bergh and A. P. Engelbrecht. “An Analysis of Particle Swarm Opti-

mizers”. PhD thesis. ZAF: University of Pretoria, 2002.

24 N. Alcantara, R. Addawe, J. Addawe

This page is intentionally left blank

