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Abstract

The Four-Tower Problem is a four-player gambler’s ruin model where two players
are involved in an even-money bet during each round. In this problem, the objective is
to solve for each player’s ruin and final placing probabilities given their initial wealths.
Weighted directed multigraphs were constructed to model the transitions between chip
states. Linear systems are constructed based on the connections between nodes in these
graphs. Solutions for the placing probabilities of each player are obtained from these
linear systems. A numerical algorithm is developed to solve the Four-Tower Problem
for any positive integer chip total. The solution leads to exact values, and results show
that the equities in the this model depend on the number, not just proportion, of chips
each player holds.
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1 Introduction

In the classic gambler’s ruin scenario, a gambler starts with an initial wealth A. Each
round, they bet a fixed amount on a game in which their winning probability is p. They
keep playing the same game until they achieve either success, where their wealth reaches a
target amount S, or ruin, where they lose all their money.

If the game is fair, that is, the winning probability p is equal to 1/2, the gambler’s
probability of success is A

S .
We can extend the problem to an N -player gambler’s ruin problem, where N > 1. In

particular, consider the four-player gambler’s ruin problem. For these type of problems, the
main objective is to determine the success and ruin probabilities of each player. Consider
a game with four players having initial wealths S1, S2, S3, and S4. The four-player game

19



20 R.I. Marfil, G. David

has several variations based on the players involved in each betting round, and how winners
and losers are selected in these rounds.

In this paper, we will focus on the four-player variation called the four-tower game. In
a four-tower game, each round has one winner and one loser. Each game involves exactly
two of the four players, each with an equal probability of winning the game. The players
are paired randomly with equal probabilities, so that each pair has a probability 1

6 of being
selected. We fix the bet size to 1 unit for each game. Suppose (S1, S2, S3, S4) represents the
initial state. The new states after one betting round are shown by the following map:

(S1, S2, S3, S4)→



(S1 ± 1, S2 ∓ 1, S3, S4)

(S1 ± 1, S2, S3 ∓ 1, S4)

(S1 ± 1, S2, S3, S4 ∓ 1)

(S1, S2 ± 1, S3 ∓ 1, S4)

(S1, S2 ± 1, S3, S4 ∓ 1)

(S1, S2, S3 ± 1, S4 ∓ 1)

. (1)

In the past years, several solutions have been used in modeling and solving the N -tower
problem where N > 2. In these problems, the probability of a player finishing first is
easily solved by recursion, and is given by the proportion of a player’s wealth to the total
wealth of the three players involved in the game. Bruss et al (2002) used martingales in
giving an asymptotic solution to the three-tower problem [1]. They however described the
difficulty they encountered in attempting to generalize their solution for tower problems with
more than three players. David (2014) used weighted directed multigraphs and recursions
to model and solve the three-tower problem [2]. For a fixed wealth S, unique states were
generated and transitions between these states were represented as edges in a multigraph. A
linear system was constructed based on recurrence equations obtained from this multigraph,
which was then solved to obtain the ruin probabilities of each player. After ruin probabilities
are solved, placing probabilities of each player can be computed easily. Swan and Bruss
(2006) described a matrix-analytic approach in solving the N -tower problem [6]. In their
methodology, ruin probabilities for each player can be obtained, but placing probabilities
for the other remaining players cannot be calculated. This gives a particular disadvantage;
equities for each player cannot be completely solved if the game has payouts for the places
beyond the first.

Since solving the four-tower problem means finding only the ruin probabilities of each
player, finding placing probabilities of each player in the four-tower problem remains an open
problem. However, once one player is ruined in the four-tower game, the game is reduced
to the three-tower problem for the remaining players. Hence, solutions to the three-tower
problem can be used to obtain placing probabilities for the remaining players once one player
is ruined in the four-tower game. Solving for the placing probabilities leads to a model for
calculating equities in tournaments with players having wealths pitted against each other.

A benchmark for solving the final placing probabilities is the Independent Chip Model
or ICM. This model uses an algorithm to calculate equities in a tournament where players
have wealths which are pitted against each other. This model uses conditional probabilities
in order to calculate the placing probabilities of each player, which can then be used to
calculate their equities in the given tournament. This model is credited to Malmuth-Harville
[5]. However, there is no proof provided for the algorithm in this model.

The main purpose of this paper is to solve the placing probabilities of each player for the
Four-Tower Problem. Specifically, the paper aims to accomplish the following. First, we will
construct a weighted directed multigraph for the Four-Tower Problem with prescribed total
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wealth S. From this, we will construct an appropriate linear system that represents the
multigraph for the Four-Tower Problem with the prescribed total wealth S. Lastly, we will
develop a numerical algorithm for solving placing probabilities for the Four-Tower Problem
with the prescribed total wealth S.

2 Theoretical Framework

2.1 Weighted Directed Multigraphs

We use the following definitions to define a weighted directed multigraph.

1. A graph G(V,E) consists of two types of elements, namely vertices and edges. Every
edge has two endpoints in the set of vertices. V is the set of vertices while E is the
set of edges.

2. A weighted graph is a graph having a weight, or number, associated with each edge.

3. A directed graph is a graph where all edges are directed from one vertex to another.

4. A multigraph is a graph which may have multiple edges connecting the same pair of
vertices.

5. A weighted directed multigraph is a graph satisfying items (1) to (4).

Weighted directed multigraphs will be used to model the transitions between states given
the players’ initial wealths. Variables for the players’ placing probabilities will be assigned
to each unique state. The system of equations relating these variables will then be solved
for these probabilities.

2.2 Independent Chip Model

The Independent Chip Model (or ICM) is credited to Malmuth-Harville [5]. This model
is used for calculating the placing probabilities of each player in tournaments with players
having chip stacks pitted against one another.

In this model, the probability of a player placing first is that player’s stack in proportion
to the number of chips in all stacks.

Let N be the number of players, Xi be the random variable denoting the placing of
Player i, and Si be the current stack size of Player i. Then

P (Xi = 1) =
Si

S
(2)

where S = S1 + S2 + · · ·+ SN .
The probability of placing second, third, etc. is calculated using conditional probabilities.

Calculations for P (Xi = 2) and P (Xi = 3) are done using the following equations:

P (Xi = 2) =
∑
j 6=i

P (Xi = 2|Xj = 1)P (Xj = 1)

=
∑
j 6=i

Sj

S

Si

S − Sj
;

P (Xi = 3) =
∑
j 6=i

∑
k 6=i,j

P (Xi = 3|Xk = 2 ∩Xj = 1)P (Xk = 2|Xj = 1)P (Xj = 1)

=
∑
j 6=i

∑
k 6=i,j

Sj

S

Sk

S − Sj

Si

S − Sj − Sk
.
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In general, for any n ∈ N such that n ≤ N , we have

P (Xi = n) =
∑

k2 6=k1

∑
k3 6=k1,k2

· · ·
∑

kn 6=k1,...,kn−1

Sk1
Sk2
· · ·Skn

S(S − Sk2
) · · · (S − Sk2

− · · · − Skn
)
,

where i = k1. The ICM is the commonly used formula for estimating players’ placing prob-
abilities in an N -player game, specifically in poker tournaments. These placing probabilities
are then used to calculate the players’ equities.

2.3 Absorbing Markov Chains

We use the following definitions to define an absorbing Markov chain [4].

1. Given a set of states S = {s1, s2, . . . , sn}, a Markov chain is a process satisfying the
following conditions:

(a) The transition probability pij of moving from an initial state si to any next state
sj depends only on the current state si.

(b) The sum of all transition probabilities from any state si is equal to 1, i.e.,

n∑
j=1

pij = 1 (3)

for all i ∈ {1, 2, . . . , n}.

2. A state si of a Markov chain is called an absorbing state if it is impossible to leave it,
i.e., pii = 1.

3. An absorbing Markov chain is a Markov chain satisfying the following conditions:

(a) It has at least one absorbing state.

(b) It is possible to go from any state to at least one absorbing state in a finite
number of steps.

4. A state si of an absorbing Markov chain is called a transient state if it is not absorbing.

5. Absorbing Markov chains can be represented using matrices whose sizes depend on
the number of transient and absorbing states. Suppose there are t transient states
and r absorbing states for an absorbing Markov chain. The transition matrix has the
following canonical form:

P =

[
Q R
0 I

]
(4)

where Q is a t× t matrix, R is a nonzero t× r matrix, 0 is an r × t zero matrix, and
I is an r × r identity matrix. The first t states are the transient states while the last
r states are the absorbing states.

6. For an absorbing Markov chain P, the matrix N = (I−Q)−1 is called the fundamental
matrix for P. The entry nij of N gives the expected number of times that the process
is in the transient state sj if it started in the transient state si.
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3 Methods

This paper aims to calculate placing probabilities for the four players given their initial
wealths. Probabilities of placing first are just the proportions of the players’ initial wealths
to the total wealth in play. What remains is to calculate the probabilities of placing second,
third, and fourth for each player. These calculations are done using a numerical algorithm
described in this section. We first define the following.

Definition 1. A chip state is an ordered quadruple (S1, S2, S3, S4), where S1, S2, S3, S4 are
nonnegative integers. The elements of a chip state represent the wealths of each player at a
given time.

Definition 2. A chip position is an element of a chip state (S1, S2, S3, S4). In this case,
the chip positions are S1, S2, S3, and S4. Each position in a chip state has corresponding
probabilities of finishing first, second, down to the last place among the four players.

Definition 3. A terminal state is a chip state where at least one chip position is zero.
Placing probabilities for each player for terminal states can be solved based on the solutions
to the three-tower problem.

Definition 4. A nonterminal state is a chip state with four positive chip positions.

Two players are selected randomly using a uniform distribution, and these two players
will face each other in an even-money betting round. Without loss of generality, let Player
1 and Player 2 have wealth x and y, respectively. The winner of the round is selected
randomly, and that player adds to his stack one chip taken from the other player’s initial
stack. For example, if Player 1 wins over Player 2, their new chip stacks will be x + 1
and y − 1, respectively. For as long as the states are nonterminal, the process is repeated.
Upon reaching a terminal state, placing probabilities for the remaining three players can be
obtained from the three-tower problem solutions.

We use the following definition for the mapping for the Four-Tower Problem.

Definition 5. Consider a nonterminal state (S1, S2, S3, S4). The possible states after one
round of betting are shown by the map:

(S1, S2, S3, S4)→



(S1 ± 1, S2 ∓ 1, S3, S4)

(S1 ± 1, S2, S3 ∓ 1, S4)

(S1 ± 1, S2, S3, S4 ∓ 1)

(S1, S2 ± 1, S3 ∓ 1, S4)

(S1, S2 ± 1, S3, S4 ∓ 1)

(S1, S2, S3 ± 1, S4 ∓ 1)

, (5)

with each state having probability 1
12 of being selected.

3.1 Construction of Multigraph

Let S be the total wealth of the four players. We construct the weighted directed multigraph
using the following algorithm:

1. Unique states (S1, S2, S3, S4) are generated such that S = S1 + S2 + S3 + S4 and
S1 ≥ S2 ≥ S3 ≥ S4, that is, the total wealth of the four players is S and their wealths
are arranged in decreasing order. The generated unique states will serve as the nodes
in the graph.
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2. Terminal states (with at least one zero element) are put on the leftmost column, with
the states arranged in decreasing order of their first elements.

3. States with the last element equal to 1 are then put on the next column, with the
states also arranged in decreasing order of their first elements.

4. The process of constructing rows and columns of nodes is repeated until all states are
exhausted.

5. Given a nonterminal state (S1, S2, S3, S4), if it is possible for the chip stacks to become
(R1, R2, R3, R4) after one round of betting, an edge directed from (S1, S2, S3, S4) to
(R1, R2, R3, R4) is constructed, with weight equal to 1

12 , so that the total weight of all
outward edges from a nonterminal state must be 1.

6. Loops, which are edges whose initial and final nodes are the same, may be constructed
if a state goes to itself (up to permutation of elements) after one betting round.
Multiple edges between a pair of nodes may also be constructed if there are multiple
possible ways of transitioning between these two states.

3.2 Construction of Linear System

We construct the linear system using the following algorithm:

1. Variable assignment
A variable will be associated to each of the unique chip positions from all terminal
and nonterminal states in the order they are generated.

2. Construction of transition matrix Q
An n×n matrix Q is constructed, where n is the number of unique chip positions from
all nonterminal states. Matrix Q is the matrix representing the transitions between
nonterminal chip positions.

3. Construction of transition matrix R
An n×m matrix R is also constructed, where m is the number of unique chip positions
from all terminal states. This matrix represents the transitions from nonterminal to
terminal chip positions.

4. Computation of entries of matrices Q and R
For each of the n variables corresponding to nonterminal positions, we determine where
the corresponding chip positions are being moved.

5. Set up of linear system
We set up and solve the linear system

(I−Q)B = R, (6)

where B is an n×m matrix containing the probabilities for the n unique nonterminal
chip positions of ending up in the m unique terminal chip positions.

6. Recursion for three-tower problem
After solving for matrix B, we construct an m×N matrix W containing the placing
probabilities for the corresponding terminal positions in the four-tower game. We do
this by recursively applying the above algorithm to the three-tower ruin problem until
we reach the 2-tower case, which is equivalent to the 2-player gambler’s ruin problem.

7. Computation of placing probabilities
We then recursively solve the tower problems up to the four-tower problem to find
BW, which contains the final placing probabilities.
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The following theorem tells us how absorption probabilities are obtained using the fun-
damental matrix of an absorbing Markov chain.

Theorem 1. Let q
(n)
ij denote the entries of matrix Qn. Let bij be the probability that an

absorbing chain will be absorbed in the absorbing state sj if it starts in the transient state
si. Let B be the matrix with entries bij. Then B is a t× r matrix, and

B = NR, (7)

where N is the fundamental matrix and R is as in the canonical form.

Proof: Note that the entry q
(n)
ij of matrix Qn is the probability of being in state sj

after n steps, when the chain starts at state si. We have

Bij =

∞∑
n=1

t∑
k=1

q
(n)
ik rkj =

t∑
k=1

∞∑
n=1

q
(n)
ik rkj =

t∑
k=1

nikrkj = (NR)ij . (8)

Hence, B = NR.

4 Results

In general, for any positive integer S, the system can be modeled as a multigraph with
loops where the vertices are the unique states up to permutations where the directed edges
represent the transitions between states. The following theorem gives us the number of
directed edges from a nonterminal state (S1, S2, S3, S4) to terminal and nonterminal states.

Theorem 2. Consider a nonterminal state (S1, S2, S3, S4), where S1 ≥ S2 ≥ S3 ≥ S4 ≥ 1.
Let 1 ≤ m ≤ 4 such that Si > 1 if i ≤ m and Si = 1 if i > m.

(i) There are 12− 3m directed edges from (S1, S2, S3, S4) to terminal states.

(ii) There are 3m directed edges from (S1, S2, S3, S4) to nonterminal states.

Proof: Consider a nonterminal state (S1, S2, S3, S4) satisfying the given conditions.
Then the first m positions of this state are greater than 1 while the last 4−m positions are
equal to 1, if m < 4. In selecting pairs of players for each round, suppose the player selected
first loses while the second player wins that round. There are 4 −m ways of selecting one
of the players with wealth 1 first, and three ways of selecting one of the remaining players
second. In each of these cases, the new state will be a terminal state since the losing player
will be ruined after the round. Hence, there are 3(4 − m) = 12 − 3m directed edges to
terminal states. In the remaining cases, we select first one of the m players with wealth
greater than 1, and any of the remaining N − 1 players second. In any of these cases, since
the losing player has wealth greater than 1 at the beginning of the round, the new state will
still be a nonterminal state. Hence, there are 3m directed edges to nonterminal states.

The next theorem describes the connections between a nonterminal state (S1, S2, S3, S4)
and some terminal states.

Theorem 3. Given a nonterminal state (S1, S2, S3, S4), where S1 ≥ S2 ≥ S3 ≥ S4 ≥ 1, it
is connected to the following terminal states, with edge weights 1

12 :

(i) (S1 + 1, S2, S3, 0), if S4 = 1
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(ii) (S1, S2 + 1, S3, 0), if S4 = 1

(iii) (S1, S2, S3 + 1, 0), if S4 = 1

(iv) (S1, . . . , Si + 1, . . . , Sj = 0, . . . , S4), for each i ∈ {1, 2, 3, 4} such that i 6= j and for
each j < 4 such that Sj = 1

Proof: We prove (i). Let (S1, S2, S3, S4), where S1 ≥ S2 ≥ S3 ≥ S4 = 1, be a
nonterminal state. Since players are selected randomly using a uniform distribution, there
are

(
4
2

)
= 6 ways of selecting a pair. Player 1 and Player 4 are paired with probability

1
6 . In this pairing, each player involved has probability 1

2 of winning one chip from the
other player. Hence, the probability of (S1, S2, S3, S4) transitioning to (S1 + 1, S2, S3, 0) is
1
6 · 12 = 1

12 . The proofs for (ii) to (iv) follow similarly.
The following theorem describes the connections between a nonterminal state (S1, S2, S3, S4)

and some nonterminal states.

Theorem 4. Given a nonterminal state (S1, S2, S3, S4), where S1 ≥ S2 ≥ S3 ≥ S4 ≥ 1, it
is connected with edge weights 1

12 to nonterminal states of the form

(i) (S1 ± 1, S2 ∓ 1, S3, S4)

(ii) (S1 ± 1, S2, S3 ∓ 1, S4)

(iii) (S1 ± 1, S2, S3, S4 ∓ 1)

(iv) (S1, S2 ± 1, S3 ∓ 1, S4)

(v) (S1, S2 ± 1, S3, S4 ∓ 1)

(vi) (S1, S2, S3 ± 1, S4 ∓ 1)

provided that each chip position in the new state is nonzero. The chip positions are rear-
ranged in decreasing order to get a valid chip state.

Proof: Let (S1, S2, S3, S4) be a nonterminal state. Since players are selected randomly
using a uniform distribution and there is a winner and a loser in each round, there are four
ways of selecting a winner and three ways of selecting a loser from the remaining players.
In each round, the winner gains one chip from the loser. Suppose Player i is selected as the
winner, while Player j is selected as the loser. Then from Definition 5, the transition after
one round is

(S1, . . . , Si, . . . , Sj , . . . , S4)→ (S1, . . . , Si + 1, . . . , Sj − 1, . . . , S4).

Since there are 12 ways of selecting these pairs of players, each with equal probability, then
each outward edge from this nonterminal state has weight 1

12 .

The following corollary describes the existence of loops in the multigraph given certain
conditions.

Corollary 5. Given a nonterminal state (S1, S2, S3, S4), where S1 ≥ S2 ≥ S3 ≥ S4 ≥ 1,
for each i ∈ {1, 2, 3, 4} and for each j such that i < j ≤ 4 and Si = Sj + 1, it has a loop
with edge weight 1

12 . The transition of positions along the loop is (Si, Sj) 7→ (Sj , Si).

Proof: Let (S1, S2, S3, S4) be a nonterminal state. Let i ∈ {1, 2, 3}, and take j ∈
{i, i + 1, . . . , 4} such that Si = Sj + 1, if such j exists. With probability 1

12 , Player j is
selected as the winner, while Player i is selected as the loser. After one round, Player i has
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wealth Si−1 or Sj while Player j has wealth Sj +1 or Si, while the wealths of the remaining
players remain unchanged. Then the transition after one round is

(S1, . . . , Si, . . . , Sj , . . . , S4)→ (S1, , . . . , Sj , . . . , Si, . . . , SN ).

Rearranging the chip positions in decreasing order yields the original state. Hence, there is
a loop whose initial and final states after one round is the chosen nonterminal state.

Example 1. In this example, we take a more detailed look at the four-tower results for
S = 6. We first look at the graph for the four-tower game with total wealth S = 6, as shown
in Figure 1.

4 1 1 0

3 2 1 0 3 1 1 1

2 2 1 12 2 2 0

terminal

nonterminal
→ 1/12

Figure 1: Lattice for N = 4, S = 6

Here, the unique terminal states are (4, 1, 1, 0), (3, 2, 1, 0) and (2, 2, 2, 0), denoted by
P1, P2, and P3, respectively. The unique nonterminal states are (3, 1, 1, 1) and (2, 2, 1, 1),
denoted by P4, and P5, respectively. From these states, we observe that there are four
unique chip positions in nonterminal states and 9 unique chip positions in terminal states.
Also, notice that there are 12 outward edges from each nonterminal state, with each edge
having weight 1

12 . Four loops are present for the state P5 since it can transition to itself if
Player 3 or 4 beats Player 1 or 2 for one chip.

After the construction of a multigraph for a given wealth total S, a linear system rep-
resenting the transitions between the states is constructed, as detailed in Section 3.2. For
example, if S = 6, we define four variables v1, v2, v3, and v4 corresponding respectively to
the unique nonterminal chip positions 3 and 1 in P4, and positions 2 and 1 in P5. We also
define nine variables w1, w2, up to w9 for terminal states, corresponding respectively to the
chip positions 4, 1, and 0 in P1, positions 3, 2, 1, and 0 in P2, and positions 2 and 0 in P3.
We get the linear system by setting up the recurrence:I4 −

1

12


0 0 3 0
0 0 1 2
1 1 2 2
0 0 2 2


B =

1

12


3 0 0 6 0 0 0 0 0
0 2 1 0 2 2 2 0 0
0 0 0 2 2 0 0 2 0
0 0 0 0 0 2 2 1 1

 (9)
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The solutions to this system is an n×m matrix that gives the absorption probabilities
for the n unique nonterminal chip positions into the m unique terminal chip positions. This
system has the following solution:

B =


0.2568 0.0066 0.0033 0.5681 0.061 0.0188 0.0188 0.0606 0.0061
0.0033 0.1756 0.0878 0.0329 0.2019 0.216 0.216 0.0465 0.0202
0.0272 0.0263 0.0131 0.2723 0.2441 0.0751 0.0751 0.2423 0.0244
0.0061 0.0404 0.0202 0.061 0.0892 0.2582 0.2582 0.1577 0.1089

 (10)

which means that for v1 (3 in P4), its probability of ending up in the terminal chip position
w1 (4 in P1) is 25.68%, and so on. Note that w3, w7 and w9 represent ruined chip positions
for the four-tower game. This implies that v1’s ruin probability is given by the sum

B1,3 + B1,7 + B1,9 = 2.82%. (11)

Recall that each player’s probability of finishing first is equal to the proportion of that
player’s wealth to the total wealth of all players. To calculate the players’ probabilities of
finishing second or third, we need the solutions to the three-tower problem for S = 6. The
graph for the three-tower game with total wealth S = 6 is shown in Figure 2.

5 1 0

4 2 0 4 1 1

3 2 13 3 0

2 2 2

terminal

nonterminal
→ 1/6

Figure 2: Lattice for N = 3, S = 6

A linear system representing the transitions between the states is constructed. We define
six variables v1 to v6 corresponding to the unique chip positions from the nonterminal states
(4, 1, 1), (3, 2, 1) and (2, 2, 2), and eight variables w1 to w8 corresponding to the unique chip
positions from the terminal states (5, 1, 0), (4, 2, 0) and (3, 3, 0). We get the linear system
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by setting up the recurrence:I6 −
1

6


0 0 2 0 0 0
0 0 0 1 1 0
1 0 1 1 0 1
0 1 1 0 1 1
0 1 0 1 1 1
0 0 2 2 2 0



C =
1

6


2 0 0 2 0 0 0 0
0 1 1 0 1 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0

 . (12)

This system has the following solution:

C =


0.3619 0.0066 0.0066 0.4475 0.0313 0.0212 0.1104 0.0146
0.0066 0.1842 0.1842 0.0262 0.2343 0.2394 0.0698 0.0552
0.0857 0.0197 0.0197 0.3426 0.0939 0.0635 0.3312 0.0438
0.0247 0.0501 0.0501 0.099 0.2716 0.1294 0.2957 0.0793
0.0146 0.0552 0.0552 0.0584 0.1345 0.3071 0.1231 0.2519
0.0417 0.0417 0.0417 0.1667 0.1667 0.1667 0.25 0.125

 (13)

which gives the absorption probabilities given an initial position vi and final position wj for
1 ≤ i ≤ 6 and 1 ≤ j ≤ 8. To calculate the players’ placing probabilities, we need the solutions
to the two-player game for S = 6. In this scenario, the players’ winning probabilities are
equal to the proportion of their wealths to the total wealth of all players. We have the
following matrix X whose entries are the placing probabilities for each nonterminal chip
position in the three-tower game:

X =



1 2 3

5 5/6 1/6 0
1 1/6 5/6 0
0 0 0 1
4 2/3 1/3 0
2 1/3 2/3 0
0 0 0 1
3 1/2 1/2 0
0 0 0 1


. (14)

Using C in (13) and X in (14), we get matrix CX shown in (15), whose entries are the
placing probabilities for each nonterminal chip position in the three-tower game:

CX =



1 2 3

4 0.6667 0.2910 0.0423
1 0.1667 0.3545 0.4788
3 0.5000 0.3731 0.1269
2 0.3333 0.4078 0.2589
1 0.1667 0.2191 0.6142
2 0.3333 0.3333 0.3333

. (15)

From this matrix, we get matrix W for the four-tower game by adding rows for zero
positions and a column for 4th place probabilities, as shown in (16):
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W =



1 2 3 4

4 0.6667 0.2910 0.0423 0
1 0.1667 0.3545 0.4788 0
0 0 0 0 1
3 0.5000 0.3731 0.1269 0
2 0.3333 0.4078 0.2589 0
1 0.1667 0.2191 0.6142 0
0 0 0 0 1
2 0.3333 0.3333 0.3333 0
0 0 0 0 1


. (16)

Finally, using B in (10) and W in (16), we get matrix BW shown below, whose entries
are the placing probabilities for each nonterminal chip position in the four-tower game:

BW =


1 2 3 4

3 0.5000 0.3382 0.1336 0.0282
1 0.1667 0.2206 0.2888 0.3239
2 0.3333 0.3156 0.2384 0.1127
1 0.1667 0.1844 0.2616 0.3873

. (17)

Example 2. In this example, we compare the results obtained for the placing probabilities
for some states of the form (4k, 3k, 2k, k) using the multigraph model and ICM. Table 1
shows these placing probabilities. First place probabilities are the same for both models
since these depend only on the proportion of the chip stacks. We observe that the solutions
obtained from the multigraph model depend on the actual number of chips of each player.
Note that placing probabilities using the ICM depend only on the proportion of the chip
stacks, which means that all states of the form (4k, 3k, 2k, k) where k ∈ N have the same
solution using the ICM. These subtle differences in placing probabilities for states having
a constant chip ratio would have been difficult or impossible to detect using other models
involving simulations.

5 Conclusions

In this paper, a method of solving player equities in the Four-Tower Problem was presented.
The assumptions for the problem were that betting was even-money with no draw, bet
size is fixed at 1 unit, and the participating players for each round were selected randomly
following a uniform distribution. The method used recursions with players having integer
wealths at the beginning of each round. A multigraph with nodes representing the different
states for a fixed total wealth S was constructed, and a linear system was constructed
to represent the transition between these states. Solutions of this linear system give the
absorption probabilities for each player in all possible states, and placing probabilities can
be obtained by applying the algorithm recursively. An advantage of this method is that
it gives exact solutions to the problem, as opposed to Bruss’s numerical method that only
gives approximations of solutions to a related problem [1]. Subtle differences in equities can
be observed, with one result showing that different chip states having the same chip ratio
result in slightly different player equities. In contrast, methods such as the ICM or models
using Brownian motion give equities which are independent of any scaling factor.

The model may be extended to solve a general N -tower problem. The model may
also be extended to one wherein the bet size may vary depending on the wealth of the
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State Position P (Xi = 1) P (Xi = 2) P (Xi = 3) P (Xi = 4)
(4, 3, 2, 1) 4 0.4000 0.3407 0.2054 0.0539
(8, 6, 4, 2) 8 0.4000 0.3406 0.2062 0.0531
(12, 9, 6, 3) 12 0.4000 0.3406 0.2064 0.0530
(16, 12, 8, 4) 16 0.4000 0.3406 0.2064 0.0530
(20, 15, 10, 5) 20 0.4000 0.3406 0.2065 0.0529

ICM 4k 0.4000 0.3159 0.2063 0.0778
(4, 3, 2, 1) 3 0.3000 0.3160 0.2753 0.1087
(8, 6, 4, 2) 6 0.3000 0.3160 0.2763 0.1077
(12, 9, 6, 3) 9 0.3000 0.3160 0.2765 0.1076
(16, 12, 8, 4) 12 0.3000 0.3160 0.2765 0.1075
(20, 15, 10, 5) 15 0.3000 0.3160 0.2766 0.1075

ICM 3k 0.3000 0.3083 0.2619 0.1298
(4, 3, 2, 1) 2 0.2000 0.2274 0.3353 0.2373
(8, 6, 4, 2) 4 0.2000 0.2274 0.3360 0.2366
(12, 9, 6, 3) 6 0.2000 0.2274 0.3361 0.2364
(16, 12, 8, 4) 8 0.2000 0.2274 0.3362 0.2364
(20, 15, 10, 5) 10 0.2000 0.2274 0.3362 0.2364

ICM 2k 0.2000 0.2413 0.3175 0.2413
(4, 3, 2, 1) 1 0.1000 0.1159 0.1841 0.6000
(8, 6, 4, 2) 2 0.1000 0.1160 0.1815 0.6026
(12, 9, 6, 3) 3 0.1000 0.1160 0.1810 0.6030
(16, 12, 8, 4) 4 0.1000 0.1160 0.1809 0.6031
(20, 15, 10, 5) 5 0.1000 0.1160 0.1808 0.6032

ICM 1k 0.1000 0.1345 0.2143 0.5512

Table 1: Solutions for Some States of the Form (4k, 3k, 2k, k)

pair of players involved in each round, with the possibility of bet size selection following a
distribution other than the uniform distribution. This may be a better approximation of
most poker tournaments since bet size between players usually belongs to the lower range
of permissible bet sizes.
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