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Abstract

In 1999, Ding and Pless [2] presented a cyclotomic approach to the construction of
all binary duadic codes of prime lengths. They have also calculated the number of all
binary duadic codes for a given prime length and the number of those binary duadic
codes that are not quadratic residue codes. In 2000, Xin Li et.al [5] constructed and
enumerated all binary duadic codes of length n = pm1

1 pm2
2 · · · pmr

r where each pi is a
prime.

In this paper, we use the results in [2] and [5] to give a formula for the number
of ternary duadic codes for a given prime length. We also illustrate the results by
enumerating all ternary duadic codes of lengths p = 13 and p = 61.
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1 Introduction

Duadic codes are an important class of cyclic codes. They include the quadratic residue codes
which are known for their good error-correcting capabilities. Whereas quadratic residue
codes exist only for prime lengths, duadic codes can be defined for composite lengths.

Binary duadic codes were first introduced by Leon, Masley, and Pless in 1984 (see [4]).
A cyclotomic approach in constructing binary duadic codes of prime lengths was introduced
by Ding and Pless [2]. This was used to count the number of all binary duadic codes for
a given prime length. In 2000, Xin Li et.al [5] extended the results in [2] and enumerated
all binary duadic codes of length n = pm1

1 pm2
2 · · · pmr

r where each pi is a prime. Then in
2010, Tada, Nishimura and Hiramitsu [6] proved the conjecture of Ding and Pless that there
are infinitely many cyclotomic duadic codes of prime lengths that are not quadratic residue
codes of prime length p.

In this paper, we consider ternary duadic codes of prime lengths. Following the tech-
niques in [2] and [5], we count the number of ternary duadic codes of length p where p is
prime. The paper is organized as follows. We present preliminary results on cyclic codes
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and duadic codes over finite fields in the subsequent section. In section 3, we show that
every ternary duadic code of prime length is cyclotomic. In the last section, we describe
a construction of ternary duadic codes of prime lengths and calculate the number of such
codes. Some example are presented at the end of this section.

2 Preliminaries

The basic results discussed in this section can be found in [3]. We assume that the reader
is familiar with the theory of cyclic codes (see e.g. [1], [3]).

Let Fq denote a field with q elements. An [n, k] linear code C over Fq is a k-dimensional
subspace of Fn

q . The elements of C are called codewords. A code C is cyclic if for every
codeword c0c1 · · · cn−1 ∈ C, its cyclic shift cn−1c0c1 · · · cn−2 is a codeword in C. Using the
natural bijective correspondence between codewords c0c1 · · · cn−1 ∈ C and polynomials c0 +
c1x+ · · · cn−1xn−1 ∈ Fq[x], cyclic codes over Fq are seen as ideals in Rn = Fq[x]/ 〈xn − 1〉.

The ring Rn = Fq[x]/ 〈xn − 1〉 is a principal ideal. For a cyclic code C, the unique monic
polynomial which divides xn − 1 and which generates the ideal C is called the generator
polynomial of C. Furthermore, when gcd(n, q) = 1, the ring Rn is a semi-simple ring.
It follows then from the Wedderburn Structure Theorems that each cyclic code C in Rn

contains a unique idempotent which generates the code C. We call this the generating
idempotent of C.

We equip Fn
q with the usual inner product x · y =

∑n
i=1 xiyi. The dual of a code C over

Fq is C⊥ = {y ∈ Fn
q |x · y = 0 ∀x ∈ C}. It can be shown that if C is a cyclic code, then so

is C⊥.
A vector x = x0x1 . . . xn−1 in Fn

q is even-like if
∑n−1

i=0 xi = 0. A code C is said to be
even-like if all its vectors are even-like. Otherwise, C is said to be odd-like. Let εn denote
the subcode of all even-like vectors in Fn

q . The code εn is an [n, n − 1] cyclic code with

generating idempotent 1− j(x) where j(x) = 1
n (1 + x+ x2 + . . . xn−1).

Let C be a cyclic code with generator polynomial g(x). Then the following are equivalent:

1. C is an even-like code.

2. j(x) /∈ C.

3. (x− 1) | g(x).

Let a be an integer such that gcd(a, n) = 1. A multiplier is a permutation µa : i 7→ ai
(mod n) defined on {0, 1, . . . , n− 1}. The multiplier µa is a permutation of the coordinate
positions of a cyclic code in Fn

q . Equivalently, the multiplier µa acts on Rn by µa(f(x)) ≡
f(xa) (mod xn − 1).

Let C1 and C2 be a pair of even-like cyclic codes in Fn
q with associated even-like gener-

ating idempotents e1(x) and e2(x), respectively. Then C1 and C2 form a pair of even-like
duadic codes if

1. e1(x) + e2(x) = 1− j(x), and

2. there is a multiplier µa such that µa(C1) = C2 and µa(C2) = C1.

In this case, we say that µa gives a splitting for the even-like duadic codes C1 and C2.
Associated to the pair C1 and C2 is the pair of odd-like duadic codes D1 = 〈1− e2(x)〉 and
D2 = 〈1− e1(x)〉.
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Theorem 1. [3] Let C1 = 〈e1(x)〉 and C2 = 〈e2(x)〉 be a pair of even-like duadic codes in
F

n
q given by the splitting µa. Then:

1. e1(x)e2(x) = 0.

2. C1 ∩ C2 = {0} and C1 + C2 = εn.

3. n is odd and C1 and C2 each have dimension n−1
2 .

4. D1 and D2 each have dimension n+1
2 .

5. Ci is the even-like subcode of Di for i = 1, 2.

6. µa(D1) = D2 and µa(D2) = D1.

7. Di ∩D2 =
〈
j(x)

〉
and D1 +D2 = Rn.

8. Di = Ci +
〈
j(x)

〉
=
〈
j(x) + ei(x)

〉
for i = 1, 2.

Let gcd(n, q) = 1 and let s be a non-negative integer less than n. The q-cyclotomic coset
of s modulo n is the set Cs = {s, sq, sq2, . . . , sqr−1} where each element is computed modulo
n and r is the smallest positive integer such that sqr ≡ s (mod n). The element s is usually
taken as the smallest number in the set. Note that the distinct q-cyclotomic cosets modulo
n partition the set {0, 1, . . . , n− 1}.

Fix a primitive nth root of unity α in some extension of Fq. Then xn−1 =
∏n−1

i=0 x−αi.
Let C be a cyclic code with generator g(x). It can be shown that g(x) =

∏
i∈T (x− αi) for

some set T which is a union of q-cyclotomic cosets. We refer to the set T as the defining
set of C. It should be noted that C is an even-like code if and only if 0 ∈ T .

Duadic codes can also be described in terms of their defining sets. Let C1 and C2 be
a pair of even-like cyclic codes in Fn

q with defining sets T1 = 0 ∪ S1 and T2 = 0 ∪ S2,
respectively, where 0 /∈ S1 and 0 /∈ S2. Then C1 and C2 form a pair of even-like duadic
codes if and only if

1. S1 ∪ S2 = {1, 2, . . . , n} and S1 ∩ S2 = ∅, and

2. there is a multiplier µa such that µa(S1) = S2 and µa(S2) = S1.

In this case, we say that the pair of subsets S1 and S2 of {1, 2, ...., n − 1} forms a splitting
of n given by µa. Note that |S1| = |S2| = (n− 1)/2.



22 Geronimo Magcanta II and Lilibeth Valdez

3 Cyclotomic Duadic Codes

In this section, we generalize the methods in [2] and [5] to show that all ternary duadic
codes of prime length are cyclotomic. Throughout the rest of the paper, we consider the
ternary field F3.

Fix an odd prime p = 2ef + 1, and let g be a primitive root modulo p. The cyclotomic
classes of order 2e are defined as

D0 =
〈
g2e
〉

Di = giD0, i = 1, 2, ..., 2e− 1,

where
〈
g2e
〉

denotes the multiplicative group generated by g2e.
Note that |D0| = |Di| , i = 1, 2, ..., 2e− 1. If Di 6= Dj , then Di ∩Dj = ∅.
Let Z2e denote the ring {0, 1, .., 2e− 1} with integer addition and integer multiplication

modulo 2e. For our aim of enumerating the ternary duadic codes of prime lengths, we need
to find all pairs (I1, I2), where I1 and I2 are subsets of Z2e, such that

1) |I1| = e;

2) there exists nonzero z ∈ Z2e satisfying

I1 + z = I2 and I2 + z = I1 (1)

where I2 = Z2e \ I1.

Such a pair (I1, I2) is called a splitting of Z2e given by z.
Set

S1 =
⋃
i∈I1

Di, S2 =
⋃
i∈I2

Di.

Then Lemma 1 of [2] states that gzS1 = S2 and gzS2 = S1.

Lemma 2. If Di = Dj then i = j.

Proof: Suppose Di = Dj for some i, j ∈ {0, 1, 2, ..., 2e − 1}. Then for each x2 =
0, 1, 2, ..., f −1, gig2ex2 ≡ gjg2ex1 for some x1 ∈ {0, 1, 2, ..., f −1}. Thus p divides i+ 2ex2−
(j + 2ex1). Letting x = x2 − x1 and h = i − j, we see that 2ef + 1 divides 2ex + h. Note
that |x| ≤ f − 1, and so |2ex| ≤ 2ef − 2e. Also, |h| ≤ 2e − 1. Hence |2ex + h| ≤ 2ef − 1|.
But 2ef + 1 divides 2ex+ h, and so 2ex+ h = 0. Noting that |h| < 2e ≤ |2ex| if x 6= 0, we
see that 2ex+ h = 0 will only hold if x = 0. Thus h = 0 and i = j.

Lemma 3. S is the union of 3-cyclotomic cosets if and only if 3S = S.

Proof:
(⇒) This is clear.
(⇐) Suppose that 3S = S. For any a ∈ S, we have 3ia ∈ S for any positive integer i.

Hence a = 3ka for some positive integer k. Thus the 3-cyclotomic coset Ca is a subset of S
for each a ∈ S. Hence S =

⋃
a∈S Ca.

For the rest of the sections, we let (I1, I2) be a splitting of Z2e given by z. Let S1 =
∪i∈I1Di and S2 = ∪i∈I2Di.

The next results show that the methods in [2] for the binary case also works for the
ternary case.
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Lemma 4. Assume 3 ≡ gh (mod p) where 1 ≤ h ≤ p−1. Then Si is a union of 3-cyclotomic
cosets for i = 1, 2 if and only if

I1 + h = I1 and I2 + h = I2. (2)

Proof: By the preceding lemma, Si is the union of 3-cyclotomic cosets if and only if
3Si = Si. Note that

Si =
⋃
j∈Ii

Dj , and 3Si = ghSi =
⋃

j∈Ii+h

Dj .

Clearly, if Ii = Ii + h then 3Si = Si.
Suppose that 3Si = Si, then ⋃

j∈Ii

Dj =
⋃

k∈Ii+h

Dk.

Let a ∈ Dj then a ∈ Dk for some k ∈ Ii +h. Thus Dj = Dk. By Lemma 2, for all j ∈ Ii,
j = k for some k ∈ Ii + h. Hence Ii ⊆ Ii + h. Analogous arguments show that Ii + h ⊆ Ii.

Lemma 5. If 3 ∈ D0 then 3Di = Di and 3Si = Si for i = 1, 2.

Proof: The proof is straightforward.

Theorem 6. If (1) and (2) are satisfied or (1) and 3 ∈ D0 are satisfied, then (S1, S2) is a
splitting of p given by µgz . (These codes are called cyclotomic duadic codes of order 2e).

Proof: By the previous lemmas, 3 ∈ D0 implies 3Si = Si, which means that Si is a
union of 3-cyclotomic cosets. Invoking Lemma 4, we see that 3 ∈ D0 if and only if equation
(2) holds. Now (1) implies gzS1 = S2 and gzS2 = S1, while (2) implies Si is a union of
3-cyclotomic cosets by Lemma 5.

Now since I1 ∩ I2 = ∅ then Di 6= Dj . Hence Di ∩Dj = ∅. Thus

S1 ∩ S2 = (
⋃
i∈I1

Di) ∩ (
⋃
j∈I2

Dj) = ∅.

Also,

S1 ∪ S2 = (
⋃
i∈I1

Di) ∪ (
⋃
j∈I2

Dj) =
⋃

k∈I1
⋃

I2

Dk =
⋃

k∈Z2e

Dk ⊂ Z∗p.

Note that if i 6= j then Di 6= Dj . Thus for any fixed j ∈ I1,

|S1| = |
⋃
i∈I1

Di| = |I1||Dj | = |I1||D0| = ef.

Similarly, |S2| = ef . Since S1 ∩ S2 = ∅, then

|S1 ∪ S2| = |S1|+ |S2| = ef + ef = 2ef = p− 1 = |Z∗p|.

Hence S1 ∪ S2 = Z∗p = {1, 2, ..., p− 1}.

Lemma 7. Let p be a prime such that p ≡ ±1 (mod 12). Then (p − 1)/ordp(3) is even,
where ordp(3) denotes the multiplicative order of 3 modulo p.
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Proof:
By the Law of Quadratic Reciprocity, 3 is a quadratic residue modulo p. Let Q be the

set of quadratic residues modulo p. Then Q is a multiplicative group of order (p − 1)/2.
Since 3 ∈ Q, ordp(3) | (p− 1)/2. Hence

p− 1

ordp(3)
= 2

[
(p− 1)/2

ordp(3)

]
.

Thus (p− 1)/ordp(3) is even.

Lemma 8. Let p be a prime such that p ≡ ±1 (mod 12) and f = ordp(3). Then {Ca} forms
the set of cyclotomic classes of order 2e, where Ca is the 3-cyclotomic coset containing a for
1 ≤ a ≤ p− 1.

Proof: By Lemma 7, we can let p − 1 = 2ef . Let g be a primitive root of unity
modulo p, i.e., Z∗p = 〈g〉 and ordp(g) = p− 1. Then gb ≡ 3 (mod p) for some integer b with
1 ≤ b ≤ p− 2. Since ordp(3) = f, we have

gbf ≡ 3f ≡ 1 ≡ gp−1 (mod p).

Hence (p− 1) | bf , which implies 2ef | bf . That is, 2e | b. Hence b = 2ex, for some x ∈ Z.
Define D0 =

〈
g2e
〉
, the subgroup generated by g2e. Then 3 ∈ D0 since 3 ≡ gb (mod p).

But gb = g2ex = (g2e)x. Thus

C1 = {1, 3, 32, ..., 3f−1} ⊆ D0.

But |
〈
g2e
〉
| = f = D0, hence C1 = D0. Note that Ca = aC1 for each a ∈ Z∗p. Therefore,

Ca = aC1 = aD0 = giD0 = Di

where a ≡ gi (mod p).

Theorem 9. Each ternary duadic code of prime length is cyclotomic.

Proof: Duadic codes of prime length p exist if and only if there exists a multiplier
which gives a splitting of p. Let (S1, S2) be that splitting of p = 2ef + 1 given by µa, where
a ∈ Z∗p = 〈g〉. Then S1 ∪ S2 = {1, 2, ..., p − 1}, S1 ∩ S2 = ∅, |S1| = |S2| = (p − 1)/2 = ef ,
gzS1 = S2 and gzS2 = S1, where gz ≡ a (mod p).

Let S1 =
⋃

a∈A0
Ca, where Ca is a cyclotomic coset containing a and A0 is a set of

representatives of distinct cyclotomic cosets. We have

ef = |S1| = |
⋃

a∈A0

Ca| = |
⋃

a∈A0

aC1| = |
⋃

a∈A0

aD0| = |
⋃
i∈I1

giD0|

= |
⋃
i∈I1

Di| = |I1||Dj | = |I1||D0| = |I1||C1| = |I1|f,

where j ∈ I1, a ≡ gi (mod p) and i = 1, 2, ..., 2e−1. Thus |I1| = e. Similarly, S2 =
⋃

i∈I2 Di

and |I2| = e. Now,

µa(S1) = µa(
⋃
i∈I1

Di) = gz(
⋃
i∈I1

Di) =
⋃
i∈I1

gzDi =
⋃
i∈I1

Di+z =
⋃

i∈I1+z

Di.

Hence
⋃

i∈I1+zDi =
⋃

j∈I2 Dj since µa(S1) = S2. Thus I1 + z = I2. Similarly, I2 + z = I1.
By Lemma 4, Si is a union of 3-cyclotomic cosets for i = 1, 2 if and only if Ii + h = Ii,

where 3 ≡ gh (mod p), i ≤ h ≤ p− 1.
Thus (S1, S2) is a splitting of p given by gz and gives cyclotomic duadic codes.
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4 Constructing ternary duadic codes of prime lengths

We will now present a cyclotomic construction of all ternary duadic codes of odd prime
lengths and then calculate the number of such codes. In this section, the methods for
constructing binary duadic codes of prime length in [2] are shown to also hold true for the
ternary case. By invoking the results in the previous section, most of the proofs follow
exactly the same arguments as those in [2] and are hence omitted.

Note that we need to consider only cyclotomic classes instead of 3-cyclotomic cosets. In
our case, each cyclotomic class is the union of some 3-cyclotomic cosets.

It is well-known that duadic codes of length n over Fq exist if and only if q is a square
modulo n (see for example [3]). Moreover, ternary duadic codes of length n = pa1

1 p
a2
2 . . . par

r

exist if and only if pi ≡ ±1 (mod 12) for 1 ≤ i ≤ r.
Let p be a prime such that p ≡ ±1 (mod 12). Note that 3 is a quadratic residue (mod p)

and (p− 1)/ordp(3) is even. Define

Pe = {p | (p− 1)/ordp(3)) = 2e}

for each e ≥ 1.
Our discussion in the previous section shows that for all primes p within the same class

Pe, we get the same number of duadic codes. Hence we need only to determine all pairs
(I1, I2) which are splittings of Z2e given by z. That is, we need to determine all pairs (I1, I2)
such that

1) I1 ⊂ Z2e with |I1| = e;

2) ∃z ∈ Z2e satisfying (1), where I2 = Z2e \ I1.

Let N(e) denote the number of such pairs.
Ternary duadic codes of length p exist if and only if there is a multiplier which gives a

splitting of p. Hence it is sufficient to calculate the number of splittings of p to determine
the number of ternary duadic codes of length p.

Lemma 10. If I1 + z = I2 and I2 + z = I1 then

I1 + αz = I1 and I2 + αz = I2 if α is even;

I1 + αz = I2 and I2 + αz = I1 if α is odd.

Proof: Note that I1 + 2z = I1 + z + z = I2 + z = I1. Similarly, I2 + 2z = I2. Hence
Ii + αz = Ii if α is even for i = 1, 2.

If α is odd then α = 2n+ 1 for some integer n. Thus,

I1 + αz = I1 + (2n+ 1)z = I1 + 2nz + z = I1 + z = I2.

Similarly, I2 + αz = I1 if α is odd.

Lemma 11. Suppose that the subgroups 〈d〉 and 〈d1〉 of Z2e are equal. Then

I1 + d1 = I2 and I2 + d1 = I1

if and only if

I1 + d = I2 and I2 + d = I1.
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Proof: Assume I1 + d = I2 and I2 + d = I1. Since 〈d〉 = 〈d1〉, then

d1 ≡ αd (mod 2e) and d ≡ βd1 (mod 2e).

Suppose that α is even. Then I1 + αd = I1 and I2 + αd = I2 by Lemma 10. Note
that if I1 + x = I1 and I2 + x = I2 then for all α, I1 + αx = I1 and I2 + αx = I2. Hence
I1 + βαd = I1 and I2 + βαd = I2 for all β. Thus I1 + βd1 = I1 and I2 + βd1 = I2, which
implies that I1 + d = I1 and I2 + d = I2, a contradiction. So α must be odd. By Lemma
10, I1 + αd = I2 and I2 + αd = I1, and so I1 + d1 = I2 and I2 + d1 = I1.

Conversely, suppose I1 + d1 = I2 and I2 + d1 = I1. By a similar argument, we can also
show that β is odd. By Lemma 10, I1 + βd1 = I2 and I2 + βd1 = I1. Hence I1 + d = I2 and
I2 + d = I1.

Theorem 12. Let e = 2se1, where e1 is odd. Then

N(e) =

s∑
j=0

22
je1−1 ≥ 2e−1.

Proof:
Consider the equation

I1 + d = I2, I2 + d = I1. (3)

Let I(d) denote the set of solutions (I1, I2) of (3).
If d1 ∈ Z2e, then 〈d〉 = 〈d1〉 for some d dividing 2e. Hence when counting pairs (I1, I2)

satisfying Equation (3), it suffices to assume that d | 2e by Lemma 11. Suppose d | 2e but
d - e. Then α = 2e/d is odd and so αd ≡ 0 ( mod 2e) for some odd α. Hence by Lemma 10,
I1 + d = I2 and I2 + d = I1 implies I1 + αd = I2 and I2 + αd = I1. Hence I1 + 0 = I2 and
I2 + 0 = I1, a contradiction. Thus d | e. It follows that we only need to consider Equation
(3) for values of d dividing e.

Let d ∈ Z2e divide e. We first calculate the cardinality of I(d). Define h = e/d. By
Equation (3), we have Ii + 2d = Ii for i = 1, 2. Thus there are d integers a0, a1, ..., ad−1 of
Z2e such that

ai 6≡ aj + d (mod 2e) ∀i, j
and

I1 =

d−1⋃
i=0

A
(i)
1 I2 =

d−1⋃
i=0

A
(i)
2

where
A

(i)
1 = {ai + 2dk | k = 0, 1, ..., h− 1}, and

A
(i)
2 = {ai + 2dk + d | k = 0, 1, ..., h− 1}.

Thus Z2e is partitioned into d pairs

(A
(i)
1 , A

(i)
2 ), i = 0, 1, ..., d− 1

where
A

(i)
1 + d = A

(i)
2 and A

(i)
1 + d = A

(i)
0 .

Hence I1 includes one and only one of each pair (A
(i)
1 , A

(i)
2 ), and there are 2d choices for I1.

But we regard (I1, I2) and (I2, I1) as the same. It follows that

|I(d)| = 2d/2 = 2d−1. (4)
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Let d1 and d2 be two divisors of e such that d1 | d2. We now investigate the relationship
between I(d1) and I(d2). Define m = d2/d1.

Suppose m is odd. Let (I1, I2) ∈ I(d1), then I1 + d1 = I2 and I2 + d1 = I1. Hence
I1 + md1 = I2 and I2 + md1 = I1, which implies I1 + d2 = I2 and I2 + d2 = I1. Thus
(I1, I2) ∈ I(d2) and hence I(d1) ⊆ I(d2).

Suppose m is even. Let (I1, I2) ∈ I(d1), then I1 + d1 = I2 and I2 + d1 = I1. Thus
I1 + md1 = I1 and I2 + md1 = I2. This implies I1 + d2 = I1 and I2 + d2 = I2. And so
(I1, I2) /∈ I(d2) Thus I(d1) ∩ I(d2) = ∅.

We then consider the divisors of e. For each pair (d1, d2) from the set

H = {e1, 2e1, 22e1, ..., 2se1}

where d1 ≤ d2, we see that d2/d1 is even. Thus I(d1) ∩ I(d2) = ∅. On the other hand, for
any divisor d1 of e, there exists d2 ∈ H such that d2/d1 is odd. In this case, I(d1) ⊆ I(d2).
Hence the set of solutions of Equation (3) for all d is

s⋃
j=0

I(2je1).

Thus

N(e) =

s∑
j=0

∣∣I(2je1)
∣∣ =

s∑
j=0

22
je1−1 = 2e−1 +

s−1∑
j=0

22
je1−1 ≥ 2e−1.

Corollary 13. N(e) = 2e−1 if and only if e is odd.

Example 14. Let p = 13. Then

2e =
p− 1

ordp(3)
=

12

3
= 4.

Therefore, e = 2.
Applying Theorem 12 to solve for N(e), where e = 2, we have e = 2se1 = 2, where e1 is

odd. Hence, e1 = 1 and s = 1. Thus,

N(2) =

s∑
j=0

22
je1−1 =

1∑
j=0

22
j(1)−1 = 1 + 2 = 3.

The 3-cyclotomic cosets modulo 13 are C0 = {0}, C1 = {1, 3, 9}, C2 = {2, 6, 5}, C4 =
{4, 12, 10}, C7 = {7, 8, 11}. The splittings are

(C1 ∪ C2, C4 ∪ C7)

(C1 ∪ C4, C2 ∪ C7)

(C1 ∪ C7, C2 ∪ C4),

showing that there are indeed three splittings.

Example 15. Let p = 61. Then

2e =
p− 1

ordp(3)
=

60

10
= 6.
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Therefore, e = 3. By Corollary 13,

N(3) = 23−1 = 4.

The 3-cyclotomic cosets modulo 61 are

C0 = {0},

C1 = {1, 3, 9, 27, 20, 60, 58, 52, 34, 41},

C2 = {2, 6, 18, 54, 40, 59, 55, 43, 7, 21},

C4 = {4, 12, 36, 47, 19, 57, 49, 25, 14, 42},

C5 = {5, 15, 45, 13, 39, 56, 46, 16, 48, 22},

C8 = {8, 24, 11, 33, 38, 53, 37, 50, 28, 23},

C10 = {10, 30, 29, 26, 17, 51, 31, 32, 35, 44}.

The splittings are

(C1 ∪ C2 ∪ C4, C5 ∪ C8 ∪ C10)

(C1 ∪ C4 ∪ C5, C2 ∪ C8 ∪ C10)

(C1 ∪ C5 ∪ C10, C8 ∪ C2 ∪ C4)

(C1 ∪ C2 ∪ C10, C8 ∪ C5 ∪ C4),

which shows that there are indeed four splittings.

Next we give an explicit description of the construction of ternary duadic codes of prime
length. The construction follows from the proof of Theorem 12 and is taken from the
methods explicitly described in [2] for the binary case.

To construct all ternary duadic codes of prime length p ∈ Pe, we let e = 2se1, where e1
is odd, and let H = {e1, 2e1, 22e1, ..., 2se1}. The procedure of this construction is as follows.

Step 1 : For each d ∈ H do the following:

1. Partition Z2e into d pairs (A
(i)
0 , A

(i)
1 ) as described in the proof of Theorem 12 of

[2].

2. Without loss of generality, we require that 0 ∈ A(0)
0 . Then fix A

(0)
0 as the root

of a complete binary tree of depth d. Write A
(i)
0 and A

(i)
1 as the two children of

each node at level i− 1 for all i. This completes the binary tree associated with

d ∈ H. Taking the union of all subsets of each branch gives an I0 and therefore

a splitting (I0, I1) ∈ I(d).

Step 2 : Form the union
⋃

d∈H I(d).

When e is odd, the above procedure is simplified as follows.

Step 1 : Divide the elements of Z2e into the following groups:

(0, e), (1, e+ 1), . . . , (e− 1, 2e− 1).
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Step 2 : Fix a0 = 0 as the root of a binary tree. Each ai takes i and i+ e for i ≥ 1, and the
values are written at level i. Doing this at each level completes the binary tree. The
branches of the binary tree give all 2e−1 possible I0s.

The next examples illustrate how we can construct ternary duadic codes of prime length
p ∈ Pe.

Example 16. We will construct the 22 ternary duadic codes of length p ∈ P3. This includes
the case when p = 61 (see Example 15). Here e = 3, so we partition Z2e into the following
groups: (0, 3), (1, 4), (2, 5). Thus (I0, z) can be one of ({0, 1, 2}, 3), ({0, 1, 5}, 3), ({0, 2, 4}, 3)
or ({0, 4, 5}, 3).

For instance, when p = 61, each (I0, z) corresponds to a desired splitting of 61 as given
in Example 15.

Example 17. We will construct the 3 ternary duadic codes of length p ∈ P2. (This includes
p = 13 as in Example 14). In this case, H = {1, 2}.

If d = 2 then h = 1, so we have

A0
0 = {0}, A0

1 = {2}

A1
0 = {1}, A1

1 = {3}

Thus (I0, 2) = ({0, 1}, 2), ({0, 3}, 2).
If d = 1 then h = 2, so we have

A0
0 = {0, 2}, A0

1 = {1, 3}

Thus (I0, 1) = ({0, 2}, 1).
Therefore (I0, z) can be any of ({0, 1}, 2), ({0, 3}, 2) or ({0, 2}, 1).
When p = 13, the three possible (I0, z)s correspond to the three splittings of p = 31 as in

Example 14.
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