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Abstract

Let F denote an algebraically closed field. Denote the three-element set by X =
{A,B,C}, and let F 〈X 〉 denote the free unital associative F-algebra on X . Fix a
nonzero q ∈ F such that q4 6= 1. The universal Askey-Wilson algebra ∆ is the quotient
space F 〈X 〉 /I, where I is the two-sided ideal of F 〈X 〉 generated by the nine elements
UV − V U , where U is one of A,B,C, and V is one of

(q + q−1)A +
qBC − q−1CB

q − q−1
,

(q + q−1)B +
qCA− q−1AC

q − q−1
,

(q + q−1)C +
qAB − q−1BA

q − q−1
.

Turn F 〈X 〉 into a Lie algebra with Lie bracket [X,Y ] = XY −Y X for all X,Y ∈ F 〈X 〉.
Let L denote the Lie subalgebra of F 〈X 〉 generated by X , which is also the free Lie
algebra on X . Let L denote the Lie subalgebra of ∆ generated by A,B,C. Since the
given set of defining relations of ∆ are not in L, it is natural to conjecture that L is
freely generated by A,B,C. We give an answer in the negative by showing that the
kernel of the canonical map F 〈X 〉 → ∆ has a nonzero intersection with L. Denote
the span of all Hall basis elements of L of length n by Ln, and denote the image of∑n

i=1 Li under the canonical map L → L by Ln. We show that the simplest nontrivial
Lie algebra relations on L occur in L5. We exhibit a basis for L4, and we also exhibit
a basis for L5 if q is not a sixth root of unity.
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1 Introduction
Let F be an algebraically closed field and fix a nonzero q ∈ F such that q4 6= 1. Given
a, b, c ∈ F, the Askey-Wilson algebra with parameters a, b, c is the unital associative F-
algebra AW := AWq(a, b, c) defined as having generators A,B,C and relations

A+
qBC − q−1CB

q2 − q−2
=

a

q + q−1
,
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B +
qCA− q−1AC

q2 − q−2
=

b

q + q−1
,

C +
qAB − q−1BA

q2 − q−2
=

c

q + q−1
.

The algebra AW was introduced in [8] in order to desrcibe the Askey-Wilson polynomials
[2]. A wide range of applications of the Askey-Wilson algebra is discussed in [7, Section 1].
These applications include integrable systems, quantum mechanics, the theory of quadratic
algebras, Leonard pairs and Leonard triples, and quantum groups. A central extension of the
Askey-Wilson algebra AW is introduced in [7], which is called the universal Askey-Wilson
algebra.

Definition 1 ([7, Definition 1.2]). The universal Askey-Wilson algebra is the unital asso-
ciative F-algebra, which we denote by ∆, defined as having generators A,B,C, and relations
which assert that the following are central in ∆:

A+
qBC − q−1CB

q2 − q−2
, (1)

B +
qCA− q−1AC

q2 − q−2
, (2)

C +
qAB − q−1BA

q2 − q−2
, (3)

where q is a nonzero scalar that is not a fourth root of unity.

Our main object of study is the Lie subalgebra L of ∆ generated by A,B,C. We show
that a set of defining relations for ∆ cannot be expressed in terms of Lie algebra operations
only, and yet this does not imply that L is freely generated by A,B,C. Denote the free
unital associative F-algebra on the three-element set X = {A,B,C} by F 〈X 〉, and the free
Lie algebra on X by L. Recall that L is the Lie subalgebra of F 〈X 〉 generated by A,B,C.
We use the basis of L which was introduced by Hall [5]. Let us call the images of the
Hall basis elements under the canonical map L → L as the standard Lie monomials of L.
We show that the kernel of the canonical map F 〈X 〉 → ∆ has a nonzero intersection with
L. The generators A,B,C are the standard Lie monomials of length 1. The standard Lie
monomials of lengths ≥ 1 are constructed according to some rules, which we shall discuss
in later sections. We show that the simplest Lie algebra relations on L occur at length 5,
and we determine a maximal linearly independent set of standard Lie monomials of length
at most 5.

2 Preliminaries
Let F be an algebraically closed field. Throughout, by an F-algebra we mean a unital
associative F-algebra. Let A be an F-algebra. Recall that an anti-automorphism of A is a
bijective F-linear map ψ : A → A such that ψ(fg) = ψ(g)ψ(f) for all f, g ∈ A. We turn A
into a Lie algebra with Lie bracket [f, g] = fg − gf for f, g ∈ A.

Let N = {0, 1, 2, . . .} denote the set of natural numbers. Given a nonzero n ∈ N, let X
denote an n-element set. We shall refer to any element of X as a letter. For t ∈ N, by a
word of length t on X we mean a sequence of the form

X1X2 · · ·Xt, (4)
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where Xi ∈ X for 1 ≤ i ≤ t. Given a word W on X , denote the length of W by |W |. The
word of length 0 will be denoted by 1. Let 〈X 〉 denote the set of all words on X . Given
words X1X2 · · ·Xs and Y1Y2 · · ·Yt on X , their concatenation product is

X1X2 · · ·XsY1Y2 · · ·Yt.

We now recall the free F-algebra F 〈X 〉. The F-vector space F 〈X 〉 has basis 〈X 〉. Mul-
tiplication in the F-algebra F 〈X 〉 is the concatenation product. We endow F 〈X 〉 with a
symmetric bilinear form ( , ) with respect to which 〈X 〉 is an orthonormal basis. For any
f ∈ F 〈X 〉 and any word W , the coefficient of W in f is (f,W ).

Given n ∈ N, the subspace of F 〈X 〉 spanned by all the words of length n is the
n-homogenous component of F 〈X 〉. Observe that F 〈X 〉 is the direct sum of all the n-
homogenous components for n ∈ N. If f is an element of the m-homogenous component
and g is an element of the n-homogenous component, then fg is an element of the (m+n)-
homogenous component. It follows that the set of all n-homogenous components of F 〈X 〉
for all n ∈ N is a grading of F 〈X 〉.

The following notation will be useful. Let W = X1X2 · · ·Xt denote a word on X . We
define W ∗ to be the word XtXt−1 · · ·X1 on X . Let θ denote the F-linear map

θ : F 〈X 〉 → F 〈X 〉 ,
W 7→ (−1)|W |W ∗, (5)

for any word W . By [6, p. 19], the map θ is the unique anti-automorphism of the F-algebra
F 〈X 〉 that sends X to −X for any letter X.

Let L denote the Lie subalgebra of the Lie algebra F 〈X 〉 generated by X . Following [6,
Theorem 0.5], we call L the free Lie algebra on X .

Proposition 2 ([6, Lemma 1.7]). For f ∈ L, we have θ(f) = −f .

We now recall the notion of a Lie monomial on X . The set of all Lie monomials on
X is the minimal subset of F 〈X 〉 that contains X and is closed under the Lie bracket.
Observe that 0 is a Lie monomial. Let U be a Lie monomial. Then U is an element of some
n-homogenous component of F 〈X 〉. We define the length of the Lie monomial U to be n.
Observe that 0 has length n for any n ∈ N. Any nonzero Lie monomial has a unique length.
Observe that the set of all Lie monomials of length 1 is X . We now consider an ordering of
Lie monomials.

Definition 3 ([4, p. 581]). Fix an ordering < on X . Suppose that the set of all Lie monomi-
als of lengths 1, 2, . . . , t−1 have been ordered such that U < V if the length of U is strictly less
than that of V . If U, V both have length t, and can be written as U = [X1, Y1] , V = [X2, Y2],
then we compare U, V using the following rules:

1. If Y1 6= Y2, then U < V iff Y1 < Y2.

2. If Y1 = Y2, then U < V iff X1 < X2.

We now introduce a basis for L consisting of Lie monomials.

Proposition 4 ([5, Theorem 3.1]). Let H be the set of Lie monomials such that X ⊂ H,
and that for any U, V ∈ H, the Lie monomial [U, V ] is also in H whenever the following
conditions hold.

1. U > V .
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2. If U = [X,Y ] for some Lie monomials X,Y , then Y ≤ V .

Then H is a basis for L, often referred to as the Hall basis of L.

Example 5. Suppose X = {A,B,C} and A < B < C. Then the elements of H of length
at most 4 are:

A,B,C, [B,A] , [C,A] , [C,B] , [[B,A] , A] , [[C,A] , A] , [[B,A] , B] ,

[[C,A] , B] , [[C,B] , B] , [[B,A] , C] , [[C,A] , C] , [[C,B] , C] ,

[[[B,A] , A] , A] , [[[C,A] , A] , A] , [[[B,A] , A] , B] , [[[C,A] , A] , B] ,

[[[B,A] , B] , B] , [[[C,A] , B] , B] , [[[C,B] , B] , B] , [[[B,A] , A] , C] ,

[[[C,A] , A] , C] , [[[B,A] , B] , C] , [[[C,A] , B] , C] , [[[C,B] , B] , C] ,

[[[B,A] , C] , C] , [[[C,A] , C] , C] , [[[C,B] , C] , C] ,

[[C,A] , [B,A]] , [[C,B] , [B,A]] , [[C,B] , [C,A]] . (6)

Observe that the above Lie monomials are listed according to the ordering in Definition 3.

Given a Lie algebra L and x, y ∈ L, recall the adjoint linear map

ad x : L→ L

that sends y 7→ [x, y]. Denote an arbitrary word on X by W = X1X2 · · ·Xt. The Lie
bracketing from left to right is the linear map F 〈X 〉 → L that sends 1 7→ 0 and sends the
word W into a Lie monomial according to the following rules:

1. If |W | = 1, then W 7→W .

2. Suppose that the images of all words of length < |W | have been defined. Denote the
image of X1X2 · · ·Xt−1 by V . Then

W 7→ (−ad Xt) (V ) = [V,Xt] .

That is, X1X2 · · ·Xt 7→ [[[X1, X2] , · · · ] , Xt] for t ≥ 2. A Lie monomial that is an image of
some word under Lie bracketing from left to right is said to be left-normed.

Notation 6. Given a word W , we denote the image of W under Lie bracketing from left
to right by [W ].

Example 7. With reference to Example 5, we rewrite (6) using Notation 6.

A,B,C, [BA] , [CA] , [CB] ,
[
BA2

]
,
[
CA2

]
, [BAB] ,

[CAB] ,
[
CB2

]
, [BAC] , [CAC] , [CBC] ,[

BA3
]
,
[
CA3

]
,
[
BA2B

]
,
[
CA2B

]
,[

BAB2
]
,
[
CAB2

]
,
[
CB3

]
,
[
BA2C

]
,[

CA2C
]
, [BABC] , [CABC] ,

[
CB2C

]
,[

BAC2
]
,
[
CAC2

]
,
[
CBC2

]
,

[[CA] , [BA]] , [[CB] , [BA]] , [[CB] , [CA]] . (7)
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Throughout, by an ideal of an F-algebra A we mean a two-sided ideal of A. By a Lie
ideal of a Lie algebra L we mean an ideal of L under the Lie algebra structure. We now
recall the notion of algebras having generators and relations (i.e., having a presentation).
Denote the elements of X by G1, G2, . . . , Gn.

Let f1, f2, . . . , fm ∈ F 〈X 〉 and let I be the ideal of F 〈X 〉 generated by f1, f2, . . . , fm. We
define F 〈X 〉 /I as the F-algebra with generators G1, G2, . . . , Gn and relations f1 = 0, f2 =
0, . . . , fm = 0. The Lie subalgebra of F 〈X 〉 /I generated by X is L/ (I ∩ L).

Let g1, g2, . . . , gm ∈ L and let J be the Lie ideal of L generated by g1, g2, . . . , gm. We
define L/J as the Lie algebra with generators G1, G2, . . . , Gn and relations g1 = 0, g2 =
0, . . . , gm = 0.

Suppose L is a Lie algebra (over F) generated by X . Then there exists an ideal K of L
such that L = L/K. Let φ : L → L/K be the canonical Lie algebra homomorphism. Then
the following span L:

φ(U), for U ∈ H. (8)

We call (8) the standard Lie monomials of the Lie algebra L. Observe that the list of the
standard Lie monomials of L is identical to the list of elements of H. This is because the
Lie algebra homomorphism φ fixes generators. We order the list of standard Lie monomials
of L in a manner analogous to that given in Definition 3.

3 The universal Askey-Wilson algebra
Hereon, let F be an algebraically closed field, and fix a nonzero q ∈ F such that q4 6= 1. We
fix X = {A,B,C}. Let F 〈X 〉 be the free associative algebra on X . We use the ordering
A < B < C to construct the Hall basis H of the free Lie algebra L on X . Define the
following elements of the free algebra F 〈X 〉.

α := (q + q−1)A+
qBC − q−1CB

q − q−1
, (9)

β := (q + q−1)B +
qCA− q−1AC

q − q−1
, (10)

γ := (q + q−1)C +
qAB − q−1BA

q − q−1
. (11)

We also define the following Lie products in F 〈X 〉.

r0 := [A,α] , r3 := [B,α] , r6 := [C,α] ,

r1 := [B, β] , r4 := [C, β] , r7 := [A, β] ,

r2 := [C, γ] , r5 := [A, γ] , r8 := [B, γ] .

Define I as the ideal of F 〈X 〉 generated by r0, r1, . . . , r8.
With reference to Definition 1, we express ∆ as a quotient space of F 〈X 〉, and as a

consequence make explicit the defining relations of ∆.

Proposition 8. ∆ = F 〈X 〉 /I.

Proof: Recall ∆ has relations which assert that each of (1),(2),(3) commutes with
every element of ∆. Equivalently, each of (1),(2),(3) commutes with every generator A,B,C.
Observe that each of α, β, γ is a scalar multiple of (1),(2),(3), respectively. Then it suffices
to define ∆ as having nine defining relations of the form [X, δ], where X ∈ {A,B,C} and
δ ∈ {α, β, γ}. By the definition of I, we get the desired result.



56 R. R. Cantuba

We denote the images of α, β, γ under the canonical map F 〈X 〉 → ∆ by the same
symbols.

Proposition 9. r0, r1, . . . , r8 /∈ L.

Proof: Let θ denote the F-linear map in (5). It is routine to show that in the free
algebra F 〈X 〉, we have θ(ri) + ri 6= 0 for 0 ≤ i ≤ 8. Use Proposition 2.

By a a word in ∆ we mean the image of an element of 〈X 〉 under the canonical map
F 〈X 〉 → ∆. Observe that the list of all words in ∆ is identical to the list of all the words on X
in the free algebra F 〈X 〉 since the canonical map F 〈X 〉 → ∆ is an F-algebra homomorphism
that fixes generators. We also preserve the ordering of generators A < B < C in ∆. By a
∆-word, we mean all elements of ∆ of the form

Wαrβsγt (12)

where W is a word in ∆, and r, s, t ∈ N.
We now recall some properties of ∆ as studied in [7]. Let U = X1X2 · · ·Xt be a ∆-word,

where Xi is either a generator of ∆ or one of α, β, γ for 1 ≤ i ≤ t. Without loss of generality,
we assume U is of the form (12) since α, β, γ are central in ∆. By an inversion for W we
mean an ordered pair (j, k) ∈ N2 such that 1 ≤ j < k ≤ t and Xj , Xk ∈ {A,B,C} such that
Xj > Xk. Any ∆-word with no inversions is said to be irreducible. For instance, CABA has
4 inversions and CB2A has 5, while the ∆-words A2BC,AB2C are irreducible. The shortest
words for which inversions exist are BA,CA,CB and using (9) to (11), the following hold
in both F 〈X 〉 and ∆.

BA = q2AB + q(q + q−1)(q − q−1)C − q(q − q−1)γ, (13)
CA = q−2AC − q−1(q + q−1)(q − q−1)B + q−1(q − q−1)β, (14)
CB = q2BC + q(q + q−1)(q − q−1)A− q(q − q−1)α. (15)

Consider the word CABA, one of the 4 inversions in which is caused by the first two letters
C,A. Substituting for CA using (14), the result is a linear combination of ACBA, B2A,
BAβ, each having fewer inversions than CABA.

Remark 10. Following [7, p. 7] and [3, Theorem 1.2], for any ∆-word W , there exists a
finite number of steps of substituting for inversions using (13) to (15) such that the final
result is a unique linear combination of irreducible ∆-words. It follows that a basis for ∆
consists of the vectors

AiBjCkαrβsγt, i, j, k, r, s, t,∈ N. (16)

Given subspaces H,K of ∆, define HK := Span {hk | h ∈ H, k ∈ K}. If K is a subspace
of H, we say that a subspace K ′ of H is a complement of K in H whenever

H = K +K ′. (direct sum)

We now recall a filtration for ∆ as given in [7, Section 5]. This filtration is a sequence
{∆n}n∈N of subspaces of ∆ defined by

∆0 := F1,

∆1 := ∆0 + Span {A,B,C, α, β, γ},
∆n := ∆1∆n−1, n ≥ 1,
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and has the following properties for all i, j ∈ N.

∆i ⊆ ∆i+1, (17)

∆ =
⋃
n∈N

∆n,

∆i∆j = ∆i+j . (18)

Given n ∈ N, a basis for ∆n consists of the vectors

AiBjCkαrβsγt, i, j, k, r, s, t,∈ N, i+ j + k + r + s+ t ≤ n, (19)

while the following vectors form a basis for a complement of ∆n in ∆n+1

AiBjCkαrβsγt, i, j, k, r, s, t,∈ N, i+ j + k + r + s+ t = n+ 1. (20)

We denote the span of the vectors (20) by ∆c
n.

By [7, Lemma 6.1], the following elements of ∆ coincide and are central.

qABC + q2A2 + q−2B2 + q2C2 − qAα− q−1Bβ − qCγ, (21)
qBCA+ q2A2 + q2B2 + q−2C2 − qAα− qBβ − q−1Cγ, (22)
qCAB + q−2A2 + q2B2 + q2C2 − q−1Aα− qBβ − qCγ, (23)

q−1CBA+ q−2A2 + q2B2 + q−2C2 − q−1Aα− qBβ − q−1Cγ, (24)
q−1ACB + q−2A2 + q−2B2 + q2C2 − q−1Aα− q−1Bβ − qCγ, (25)
q−1BAC + q2A2 + q−2B2 + q−2C2 − qAα− q−1Bβ − q−1Cγ. (26)

Denote this element by Ω, which is called in [7] as the Casimir element of ∆. As shown in
[7, Section 7], we have other bases for ∆,∆n (for n ∈ N) that involve Ω. First, the following
vectors form a basis for ∆.

AiBjCkΩlαrβsγt, i, j, k, l, r, s, t ∈ N, ijk = 0. (27)

Given n ∈ N, a basis for ∆n consists of the vectors

AiBjCkΩlαrβsγt, i, j, k, l, r, s, t ∈ N, ijk = 0, i+ j + k + 3l + r + s+ t ≤ n, (28)

while the following vectors form a basis for a complement of ∆n in ∆n+1.

AiBjCkΩlαrβsγt, i, j, k, l, r, s, t ∈ N, ijk = 0, i+ j + k + 3l + r + s+ t = n+ 1.

Recall that ∆ is a Lie algebra with Lie bracket [X,Y ] := XY −Y X for X,Y ∈ ∆. Denote
the derived algebra of ∆ by [∆,∆], and the ideal of ∆ generated by [∆,∆] by ∆ [∆,∆] ∆.
It follows that the Lie subalgebra of ∆ generated by A,B,C is L := L/(I ∩ L). Given
nonzero n ∈ N, denote the span of all Hall basis elements of L of length n by Ln. Denote
the image of

∑n
i=1 Li under the canonical map L → L by Ln. It follows that all standard

Lie monomials of L of length at most n span Ln.

Proposition 11. L ⊆ FA+ FB + FC + ∆ [∆,∆] ∆.

Proof: By the definition of L, we have L ⊆ FA + FB + FC + [∆,∆]. Since ∆ has
a multiplicative identity, we have [∆,∆] ⊆ ∆ [∆,∆] ∆. From these we get the desired set
inclusion.
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Proposition 12. If q is not a root of unity, then L has zero center.

Proof: Let q be not a root of unity. Suppose that Z(L) has a nonzero element f . Since
the generators A,B,C of ∆ are also in L, we have Z(L) ⊆ Z(∆). By [7, Corollary 8.3],
Z(∆) is generated by α, β, γ,Ω. Observe that there exists a filtration subspace ∆n such
that f ∈ ∆n, and that ∆n ∩ Z(∆) has a basis consisting of the vectors

Ωlαrβsγt, l, r, s, t ∈ N, 3l + r + s+ t ≤ n. (29)

Since f is nonzero, there exists a nonzero c ∈ F and a vector Ωwαxβyγz in (29) such that

f − cΩwαxβyγz = g, (30)

where g is a linear combination of vectors in (29) other than Ωwαxβyγz. Let F
[
Ā, B̄, C̄

]
denote the F-algebra of polynomials in three mutually commuting indeterminates Ā, B̄, C̄,
with coefficients from F. As shown in [7, p. 17], there exists a unique surjective F-algebra
homomorphism Ψ : ∆→ F

[
Ā, B̄, C̄

]
with kernel ∆ [∆,∆] ∆ that sends

A 7→ Ā, B 7→ B̄, C 7→ C̄. (31)

Under this homomorphism, denote the images of α, β, γ,Ω by ᾱ, β̄, γ̄, Ω̄, respectively. As
shown in [7, Lemma 11.3], we have

ᾱ = (q + q−1)Ā+ B̄C̄, (32)
β̄ = (q + q−1)B̄ + C̄Ā, (33)
γ̄ = (q + q−1)C̄ + ĀB̄, (34)
Ω̄ = (q + q−1)ĀB̄C̄ − Ā2 − B̄2 − C̄2. (35)

It is routine to show that the vectors

Ā, B̄, C̄, Ω̄lᾱrβ̄sγ̄t, l, r, s, t ∈ N, 3l + r + s+ t ≤ n, (36)

are linearly independent in F
[
Ā, B̄, C̄

]
. Observe also that by Proposition 11,

f ∈ FA+ FB + FC + ker Ψ.

Applying Ψ to both sides of (30), we have

c1Ā+ c2B̄ + c3C̄ − cΩ̄wᾱxβ̄yγ̄z = ḡ, (37)

where ḡ is a linear combination of the vectors in (36) except Ω̄wᾱxβ̄yγ̄z. We get a contra-
diction from (37). Therefore, Z(L) = 0.

We end this section by discussing some properties of ∆ related to the group PSL2(Z).
We denote by PSL2(Z) the free product of the cyclic group of order two and the cyclic group
of order three [1]. Let ρ, σ denote the generators of PSL2(Z) such that ρ3 = 1 and σ2 = 1.
By [7, Theorem 3.1], the group PSL2(Z) acts faithfully on ∆ as a group of automorphisms
in the following way:

u A B C α β γ
ρ(u) B C A β γ α
σ(u) B A C + (q − q−1)−1[A,B] β α γ
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By [7, Theorem 6.4], Ω is fixed by ρ, σ. It is routine to show that given n ∈ N, the filtration
subspace ∆n is invariant under ρ.

Proposition 13. The Lie algebra L is PSL2(Z)-invariant.

Proof: Let τ ∈ {ρ, σ}. It suffices to argue in the following way. Show that the images
of the generators A,B,C under τ are in L, and show that if the images of f, g ∈ L under τ
are in L, then so is the image of [f, g] under τ . By the above table, we are done with the
first step. For the second step, assume that the images of f, g ∈ L under τ are in L. Since
τ is an F-algebra automorphism, we have τ ([f, g]) = τ (fg − gf) = [τ(f), τ(g)] ∈ L.

4 L is not free

In this section, all computations are done in the free algebra F 〈X 〉. Our goal is to show
that I ∩ L contains a nonzero element.

Proposition 14. In the free algebra F 〈X 〉,

[BA]

q(q − q−1)
− (q + q−1)C = AB − γ, (38)

− [CA]

q−1(q − q−1)
− (q + q−1)B = AC − β. (39)

Proof: Use (13),(14) to get (38),(39), respectively.

Proposition 15. In the free algebra F 〈X 〉,[
BA2

]
q2(q − q−1)2

− (q + q−1) [CA]

q(q − q−1)
= A2B + (q + q−1)AC −Aγ +

r5
q(q − q−1)

, (40)

[BAC]

(q + q−1)(q − q−1)2
= B2 −A2 +

Aα−Bβ + r1
q + q−1

+
r2

q−1(q + q−1)(q − q−1)
.(41)

Proof: Apply −ad A to both sides of (38). The linear combination in the right side of
the resulting equation contains ABA which can be further simplified using (13). From this,
we get (40). We show (41) holds. Apply −ad C to both sides of (38). This results to a right
side that involves CAB. We substitute for CA in CAB using (14). The result involves ACB
and βB in the right side, which can be further simplified using (15) and r1 = Bβ − βB.
From this, we get (41).

Definition 16. We define the following elements of L.

H0 :=
[[CB] , [BA]]− [BABC]

(q + q−1)2(q − q−1)2
+

[
BA2

]
q − q−1

− 2 [CA] (42)

I0 := [H0, [BA]] (43)

Lemma 17. In the free algebra F 〈X 〉,

[BA]α

(q + q−1)2
= H0 +

r1B −Ar3
(q + q−1)2

− 2r5
q + q−1

+
[r2, B]

q−1(q + q−1)2(q − q−1)
. (44)
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Proof: Apply −ad B to both sides of (41). The left side involves BA2 which can be
written uniquely as a linear combination of A2B,AC,Aγ,B, β, r5 by repeated use of the
relations (13),(14). We get

[BACB]

q2(q + q−1)2(q − q−1)3
= A2B + q−3(q4 + 1)AC −Aγ

−q−2(q + q−1)(q − q−1)B + q−2(q − q−1)β

+
r5

q(q + q−1)
− [BA]α+Ar3 − r1B
q2(q + q−1)2(q − q−1)

+
[r2, B]

q(q + q−1)2(q − q−1)2
(45)

In (45), eliminate A2B,Aγ using (40), and eliminate AC,B, β using (39). In the resulting
equation, express all Lie monomials in terms of Hall basis elements. From this, we get
(44).

Lemma 18. In the free algebra F 〈X 〉,

I0 = [BA]
[r0, B]− [r3, A]

(q + q−1)2
+

2 [r5, [BA]]

q + q−1
+

[Ar3 − r1B, [BA]]

(q + q−1)2

− [[r2, B] , [BA]]

q−1(q + q−1)2(q − q−1)
. (46)

Proof: Apply −ad [BA] to both sides of (44). The resulting left side is

[[BA]α, [BA]]

(q + q−1)2
. (47)

It is routine to show that
[BA]

[r0, B]− [r3, A]

(q + q−1)2

is equal to (47) using r0 = Aα− αA, r3 = Bα− αB. The result is (46).

Theorem 19. The Lie algebra L = L/(I ∩ L) is not freely generated by A,B,C.

Proof: Observe that if we write I0 in terms of Hall basis elements, we have

I0 =
[[[CB] , [BA]] , [BA]]− [[BABC] , [BA]]

(q + q−1)2(q − q−1)2
+

[[
BA2

]
, [BA]

]
q − q−1

− 2 [[CA] , [BA]] ,

which, by the linear independence of the Hall basis elements, implies that I0 6= 0. But by
(46), we further have I0 ∈ I ∩ L. Therefore, L/(I ∩ L) 6= L.

5 Properties of some standard Lie monomials of L
We discuss properties of some standard Lie monomials of L in relation to the filtration
{∆n}n∈N of ∆.

Proposition 20. For any i, j ∈ N, the following hold in ∆.[
BAi

]
− qi(q − q−1)iAiB ∈ ∆i, (48)[

CAi
]
− (−1)iq−i(q − q−1)iAiC ∈ ∆i, (49)[
CBj

]
− qj(q − q−1)jBjC ∈ ∆j . (50)
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Proof: We show (48) holds by induction on i. The case i = 0 is trivial. Suppose that
for some i ∈ N, we have[

BAi−1]− qi−1(q − q−1)i−1Ai−1B ∈ ∆i−1. (51)

Denote the element in (51) by X. By the properties of the filtration {∆n}n∈N, we have
[X,A] ∈ ∆i. Using (48), we further obtain

[X,A] + qi(q − q−1)iAi−1 ((q + q−1)C − γ
)

=
[
BAi

]
− qi(q − q−1)iAiB,

which proves (48). The relations (49) and (50) are proven similarly.

Proposition 21 ([7, Lemma 8.1]). Let i, j, k ∈ N. Then the following hold in ∆.[
A,AiBjCk

]
−

(
1− q2(j−k)

)
Ai+1BjCk ∈ ∆i+j+k, (52)[

B,AiBjCk
]
−

(
q2i − q2k

)
AiBj+1Ck ∈ ∆i+j+k, (53)[

C,AiBjCk
]
−

(
q2(j−i) − 1

)
AiBjCk+1 ∈ ∆i+j+k. (54)

Proposition 22. For nonzero i, j, k ∈ N, the following hold in ∆.[
BAiBj

]
− (−1)jqi(q2i − 1)j(q − q−1)iAiBj+1 ∈ ∆i+j , (55)[

CAiCk
]
− (−1)iq−i(2k+1)(q2i − 1)k(q − q−1)iAiCk+1 ∈ ∆i+k, (56)[

CBjCk
]
− (−1)kqj(q2j − 1)k(q − q−1)jBjCk+1 ∈ ∆j+k. (57)

Proof: To show (55), use the relation (48), the relation (53) with k set to zero, and
induction on j. The relations (56) and (57) are proven similarly.

Proposition 23. The complement ∆c
1 of ∆1 in ∆2 contains [CAB] and [BAC].

Proof: Use the canonical map F 〈X 〉 → ∆ on (41) in order to obtain

[BAC]

(q + q−1)(q − q−1)2
= B2 −A2 +

Aα−Bβ
q + q−1

∈ ∆c
1. (58)

Apply −ρ2 to both sides of (58). We get

[CAB]

(q + q−1)(q − q−1)2
= C2 −A2 +

Aα− Cγ
q + q−1

∈ ∆c
1.

Proposition 24. For nonzero i, j, k ∈ N with i ≥ 2, the following hold in ∆.[
BABjCk

]
− (−1)j+kq−j(q2j − 1)k(q − q−1)j+1BjCk−1Ω ∈ ∆j+k+1, (59)[

CAiBj
]
− (−1)i+jq1−i(q2(i−1) − 1)j(q − q−1)iAi−1Bj−1Ω ∈ ∆i+j , (60)[

CAiBCk
]
− (−1)i+1q(1−i)(1+2k)(q2(i−1) − 1)k+1(q − q−1)iAi−1CkΩ ∈ ∆i+k+1. (61)

Proof: We show (59) holds. We first consider the case k = 1. By setting i = 1 in (55),
we get [

BABj
]
− (−1)jqj+1(q − q−1)j+1ABj+1 ∈ ∆j+1. (62)

Apply −ad C to the element in (62). We get[
BABjC

]
− (−1)jqj+1(q − q−1)j+1

[
ABj+1, C

]
∈ ∆j+2. (63)
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In (54) set i, j, k to 1, j + 1, 0, respectively, and combine with (63). We have[
BABjC

]
− (−1)j+1qj+1(q2j − 1)(q − q−1)j+1ABj+1C ∈ ∆j+2. (64)

Using (13), it is routine to show that

ABn − q−2nBnA ∈ ∆n, (65)

for n ∈ N. Set n = j + 1 in (65) and multiply the element by C from the right. We get

ABj+1C − q−2(j+1)Bj+1AC ∈ ∆j+2. (66)

From (64) and (66), we get[
BABjC

]
− (−1)j+1q−(j+1)(q2j − 1)(q − q−1)j+1Bj+1AC ∈ ∆j+2. (67)

Using the fact that Ω is equal to (26), we have

Bj+1AC − qBjΩ ∈ ∆j+2. (68)

From (67) and (68), we get[
BABjC

]
− (−1)j+1q−j(q2j − 1)(q − q−1)j+1BjΩ ∈ ∆j+2, (69)

from which we see that (59) holds for k = 1 and for nonzero j ∈ N. Using (54),(69) and
induction on k, we find that (59) holds for nonzero j, k ∈ N. We now show (60) holds. Since
i ≥ 2, we can rewrite (59) changing the exponents j, k to i− 1, j, respectively.[

BABi−1Cj
]
− (−1)i+j−1q1−i(q2(i−1) − 1)j(q − q−1)iBi−1Cj−1Ω ∈ ∆i+j (70)

Denote the element in (70) by X. Since ∆i+j is invariant under ρ, we have −ρ2(X) ∈ ∆i+j ,
where −ρ2(X) is the element in (60). Thus, (60) holds for nonzero i, j ∈ N. Finally, we
show (61) holds. Set j = 1 in (60).[

CAiB
]
− (−1)i+1q1−i(q2(i−1) − 1)(q − q−1)iAi−1Ω ∈ ∆i+1 (71)

Since Ω is central, if we apply −ad C to the element in (71), we get[
CAiBC

]
− (−1)i+1q1−i(q2(i−1) − 1)(q − q−1)i

[
Ai−1, C

]
Ω ∈ ∆i+2. (72)

From (54) we obtain[
Ai−1, C

]
Ω− q−2(i−1)(q2(i−1) − 1)Ai−1CΩ ∈ ∆i+2. (73)

From (71) and (73),[
CAiBC

]
− (−1)i+1q(1−i)·3(q2(i−1) − 1)2(q − q−1)iAi−1CΩ ∈ ∆i+2, (74)

from which we see that (61) holds for k = 1. Using (54),(74) and induction on k, we find
that (61) holds for nonzero i, k ∈ N with i ≥ 2.

Proposition 25. The following hold in ∆.[
CA2B

]
+ (q − q−1)3AΩ ∈ ∆3, (75)

[BABC] − (q − q−1)3BΩ ∈ ∆3, (76)
[[CB] , [CA]] − (q − q−1)3CΩ ∈ ∆3. (77)
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Proof: The relations (75),(76) follow from (60),(59), respectively. We show (77) holds.
Let V := −

[
BAC2

]
+ [CABC]. By Proposition 23, we have V ∈ ∆3. Denote the element

in (76) by X. Using the fact that ∆3 is invariant under ρ, we have

ρ(X) = [CBCA]− (q − q−1)3CΩ ∈ ∆3.

Using the Jacobi identity to express [CBCA] in terms of standard Lie monomials, we further
have

ρ(X) = [[CB] , [CA]]− V − (q − q−1)3CΩ ∈ ∆3,

and it follows that

[[CB] , [CA]]− (q − q−1)3CΩ = V + ρ(X) ∈ ∆3.

6 The standard Lie monomials of L of length at most 4

Recall that the span of the standard Lie monomials of L of length at most n is Ln. Our
goal in this section is to show that the standard Lie monomials of L of length at most 4 are
linearly independent, and hence form a basis for L4.

Proposition 26. For nonzero j, k ∈ N, the following hold in ∆.[
BABj

]
− (−1)jq(j+1)(q − q−1)j+1ABj+1 ∈ ∆j+1, (78)[

CACk
]

+ q−(k+2)(q − q−1)k+1ACk+1 ∈ ∆k+1, (79)[
CBCk

]
− (−1)kq(k+1)(q − q−1)k+1BCk+1 ∈ ∆k+1, (80)[

BA2Bj
]
− (−1)jq2(j+1)(q + q−1)j(q − q−1)j+2A2Bj+1 ∈ ∆j+2, (81)[

CA2Ck
]
− q−2(k+1)(q + q−1)k(q − q−1)k+1A2Ck+1 ∈ ∆k+2, (82)[

CB2Ck
]
− (−1)kq2(k+1)(q + q−1)k(q − q−1)k+2B2Ck+1 ∈ ∆k+2. (83)

Proof: Set i = 1, 2 in (55) to get (78),(81). Do similarly to (56) and (57) in order to
show the other relations.

Lemma 27. Fix a nonzero n ∈ N. The following vectors are linearly independent in ∆ for
any i, j, k ∈ N such that 1 ≤ i, j, k ≤ n.

1, A,B,C, (84)
[CAB] , [BAC] , (85)[

CA2B
]
, [BABC] , [[CB] , [CA]] , (86)[

BAi
]
,
[
BABj

]
,
[
BA2Bj

]
, (87)[

CAi
]
,
[
CACk

]
,
[
CA2Ck

]
, (88)[

CBj
]
,
[
CBCk

]
,
[
CB2Ck

]
. (89)

Proof: Fix n ∈ N. It suffices to show that there exists an upper triangular transition
matrix from the above vectors to a subset of the basis of ∆ consisting of the vectors in (27):

AiBjCkΩlαrβsγt, i, j, k, l, r, s, t ∈ N, ijk = 0.

Let i, j, k ∈ N such that 1 ≤ i, j, k ≤ n. From Propositions 20, 23, 25, 26 we have the
following data:

[CAB]− c1C2 − d1A2 − d2Cγ − d3Aα ∈ ∆0, (90)
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[BAC]− c2B2 − d4A2 − d5Bβ − d6Aα ∈ ∆0, (91)[
CA2B

]
− c3AΩ ∈ ∆3, (92)

[BABC]− c4BΩ ∈ ∆3, (93)
[[CB] , [CA]]− c5CΩ ∈ ∆3, (94)[

BAi
]
− eiAiB ∈ ∆i, (95)[

CAi
]
− fiAiC ∈ ∆i, (96)[

CBj
]
− gjBjC ∈ ∆j , (97)[

BABj
]
− e′jABj+1 ∈ ∆j+1, (98)[

CACk
]
− f ′kACk+1 ∈ ∆k+1, (99)[

CBCk
]
− g′kBCk+1 ∈ ∆k+1, (100)[

BA2Bj
]
− e′′jA2Bj+1 ∈ ∆j+2, (101)[

CA2Ck
]
− f ′′kA2Ck+1 ∈ ∆k+2, (102)[

CB2Ck
]
− g′′kB2Ck+1 ∈ ∆k+2, (103)

where the small letters (other than i, j, k) denote scalars. Each of (92) to (103) is of the
form M − aV ∈ ∆m, where M is a Lie monomial, a ∈ F, and V is an element of the basis
of ∆ consisting of the vectors in (27), and V /∈ ∆m. Call V the leading term of M . For
(90),(91), define the leading terms of [CAB], [BAC] by C2, B2, respectively. Observe that
no two distinct Lie monomials found in (90) to (103) have the same leading terms. This
yields a transition matrix from the vectors (84) to (89) to some of the vectors in (27) such
that all entries below the main diagonal are zero, and that the diagonal entries are

c1, . . . , c5, ei, fi, gj , e
′
j , f
′
k, g
′
k, e
′′
j , f
′′
k , g
′′
k .

By Propositions 20, 23, 25 and 26, all such scalars are nonzero. Hence, the transition matrix
is upper triangular.

Notation 28. Let In denote the set consisting of all the linearly independent vectors in
Lemma 27.

Lemma 29. Fix nonzero m,n ∈ N. The vectors Xαrβsγt are linearly independent in ∆
for any X ∈ In and any r, s, t ∈ N such that r + s+ t ≤ m.

Proof: The proof is similar to that of Lemma 27, but with (90) to (103) modified as
follows. For each of (90) to (103), multiply the element by αrβsγt and add r + s+ t to the
index of the filtration subspace. Based on these new data, an upper triangular transition
matrix can be constructed.

Notation 30. Let Imn denote the set consisting of all the linearly independent vectors in
Lemma 29. Observe that the vectors

[CB] γ, [BA]β, [CA]α, [CB]β, [CA] γ, [BA]α, (104)

are in I13 . Let I∗ denote the set obtained from I13 by replacing the vectors in (104) by the
vectors [

CAB2
]
,
[
BA2C

]
, [CABC] ,

[
BAC2

]
, [[CA] , [BA]] , [[CB] , [BA]] . (105)



A Lie algebra related to the universal ... 65

Proposition 31. The following hold in ∆.

[BA]α

(q + q−1)2
=

[[CB] , [BA]]− [BABC]

(q + q−1)2(q − q−1)2
+

[
BA2

]
q − q−1

− 2 [CA] , (106)

[CB]β

(q + q−1)2
=

[
BAC2

]
− [CABC]

(q + q−1)2(q − q−1)2
+

[
CB2

]
q − q−1

+ 2 [BA] , (107)

[CA] γ

(q + q−1)2
= −

[[CA] , [BA]] +
[
CA2B

]
(q + q−1)2(q − q−1)2

+
[CAC]

q − q−1
− 2 [CB] , (108)

[BA]β

(q + q−1)2
=

[[CA] , [BA]]−
[
BA2C

]
(q + q−1)2(q − q−1)2

− [BAB]

q − q−1
+ 2 [CB] , (109)

[CB] γ

(q + q−1)2
=
− [[CB] , [BA]] + [BABC]−

[
CAB2

]
(q + q−1)2(q − q−1)2

− [CBC]

q − q−1
− 2 [CA] , (110)

[CA]α

(q + q−1)2
=

− [CABC]

(q + q−1)2(q − q−1)2
−
[
CA2

]
q − q−1

− 2 [BA] . (111)

Proof: Apply the canonical map F 〈X 〉 → ∆ to both sides of (44) to get (106). Apply
ρ, ρ2 to both sides of (106) to get (107),(108), respectively. To get (109), apply σ to both
sides of (106). Apply ρ, ρ2 to both sides of (109) to get (110),(111), respectively.

Lemma 32. The vectors in I∗ are linearly independent in ∆.

Proof: We use (106) to (111) to construct a transition matrix from the elements of I13
to the elements of I∗. Denote such transition matrix by T . Order the rows of T such that
the last 17 correspond to

[BA] , [CA] , [CB] ,
[
BA2

]
,
[
CA2

]
, [BAB] , (112)[

CB2
]
, [CAC] , [CBC] ,

[
CA2B

]
, [BABC] , (113)[

CAB2
]
,
[
BA2C

]
, [CABC] ,

[
BAC2

]
, [[CA] , [BA]] , [[CB] , [BA]] , (114)

in that order, while order the columns of T such that the last 17 correspond to the vectors
in (112),(113) together with

[CB] γ, [BA]β, [CA]α, [CB]β, [CA] γ, [BA]α. (115)

Observe that all the vectors in I13 to be replaced to form I∗ are in (115), all the replacements
are in (114), and all the other vectors that appear in (106) to (111) (which we use to construct
the transition matrix) appear in (112),(113). Then T is of the form

T =

[
I M
0 T ′

]
where I is an identity matrix, M is some matrix with 6 columns, and T ′ is a 6 × 6 matrix
which has the following properties. All diagonal entries of T ′ are nonzero. Denote the ij-
entry of T ′ by T ′ij . All entries of T ′ below the main diagonal and all entries in the first two
columns are zero except the ones that appear below:

1

(q − q−1)2
= −T ′11 = −T ′61 = −T ′22 = T ′52 6= 0.

By these observations about T ′, we find that T is invertible. This implies that the vectors
in I∗ are linearly independent.
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Theorem 33. The standard Lie monomials of L of length at most 4 form a basis for L4.

Proof: All such vectors are in I∗. Use Lemma 32 and the fact that the vectors in the
statement span L4.

7 The standard Lie monomials of L of length at most 5

In this section, we show the Lie algebra relations that hold in L5. We also exhibit a basis
for L if q is not a sixth root of unity.

Lemma 34. The following hold in ∆.

[CA]β + [BA] γ =
−
[[
BA2

]
, [CA]

]
+
[[
CA2

]
, [BA]

]
(q − q−1)3

−
[
CA2C

]
+
[
BA2B

]
(q − q−1)2

− (q + q−1)2 ([BAC]− [CAB])

q − q−1
(116)

[CB]α− [BA] γ =
− [[BAB] , [CB]] +

[[
CB2

]
, [BA]

]
(q − q−1)3

−
[
CB2C

]
−
[
BA2B

]
(q − q−1)2

− (q + q−1)2 [CAB]

q − q−1
(117)

Proof: In view of Remark 10, write each of the left and right sides of (116) as a linear
combination of irreducible ∆-words. This yields the same linear combination of the basis
vectors (16) of ∆. Apply ρ to both sides of (116) to get (117).

Theorem 35. The following relations hold in L.[
BA2BC

]
q − q−1

= −
(2q2 + 1)(q2 + 2)

([[
BA2

]
, [CB]

]
+ [[BAB] , [CA]]

)
2q2(q + q−1)2(q − q−1)

− (q4 + 3q2 + 1) ([[BAC] , [BA]]− 2 [[CAB] , [BA]])

2q2(q + q−1)2(q − q−1)

−
[
BAC2

]
+ 2 [CABC]−

[
BAB2

]
+
[
BA3

]
, (118)[[

CB2
]
, [CA]

]
2(q + q−1)2(q − q−1)

=
−(3q4 + 5q2 + 3) [[BAC] , [CB]]

2q2(q + q−1)2(q − q−1)

+
(q4 + 3q2 + 1) [[CAB] , [CB]]

2q2(q + q−1)2(q − q−1)

+
(2q4 + 3q2 + 2) [[CBC] , [BA]]

2q2(q + q−1)2(q − q−1)

−
[
BABC2

]
−
[
CAB2C

]
q − q−1

+
[
CBC2

]
+
[
BA2C

]
−
[
CB3

]
+
[
CA2B

]
, (119)[[

CA2
]
, [CB]

]
2(q + q−1)2(q − q−1)

=

(
q4 + 3q2 + 1

)
(−2 [[BAC] , [CA]] + [[CAB] , [CA]])

2q2(q + q−1)2(q − q−1)

+
(2q2 + 1)(q2 + 2) [[CAC] , [BA]]

2q2(q + q−1)2(q − q−1)
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+

[
CA2BC

]
q − q−1

− 2 [[CB] , [BA]]−
[
CAC2

]
+2 [BABC]−

[
CAB2

]
+
[
CA3

]
, (120)

[[CAC] , [CB]] = − [[BAB] , [CB]] + [[CBC] , [CA]]−
[[
BA2

]
, [CA]

]
+
[[
CB2

]
, [BA]

]
+
[[
CA2

]
, [BA]

]
. (121)

Before we prove Theorem 35, we first discuss a manner of computations using the rela-
tions of ∆ that will be useful in the proof. Using (9),(10),(11), we have

AB − γ =
[BA]

q(q − q−1)
− (q + q−1)C, (122)

AC − β = − q [CA]

(q − q−1)
− (q + q−1)B, (123)

BC − α =
[CB]

q(q − q−1)
− (q + q−1)A. (124)

Consider (122). Apply −ad A on both sides. The resulting equation has a right side that
includes

[
BA2

]
in the linear combination and a left side that is ABA − A2B. Simplify

ABA−A2B using (13). The resulting equation has a left side which is a linear combination
of the basis (28) of ∆n for n = 2, while the right side is a linear combination of standard
Lie monomials. We use this procedure for each of (122),(123),(124) until we obtain one
equation for each standard Lie monomial of length 3. The results are:

A2B =

[
BA2

]
q2(q − q−1)2

+ (q + q−1) [CA] +Aγ + (q + q−1)2B − (q + q−1)β, (125)

A2C =
q2
[
CA2

]
(q − q−1)2

+ (q + q−1) [BA] +Aβ + (q + q−1)2C − (q + q−1)γ, (126)

AB2 =
− [BAB]

q2(q − q−1)2
− (q + q−1) [CB] +Bγ + (q + q−1)2A− (q + q−1)α, (127)

C2 −A2 =
[CAB]

(q + q−1)(q − q−1)2
+

Cγ

q + q−1
− Aα

q + q−1
, (128)

B2C =

[
CB2

]
q2(q − q−1)2

− (q + q−1) [BA] +Bα+ (q + q−1)2C − (q + q−1)γ, (129)

B2 −A2 =
[BAC]

(q + q−1)(q − q−1)2
+

Bβ

q + q−1
− Aα

q + q−1
, (130)

AC2 =
−q2 [CAC]

(q − q−1)2
+ (q + q−1) [CB] + Cβ + (q + q−1)2A− (q + q−1)α, (131)

BC2 =
− [CBC]

q2(q − q−1)2
+ (q + q−1) [CA] + Cα+ (q + q−1)2B − (q + q−1)β. (132)

Observe that the left sides are expressed in terms of the basis (28) of ∆n for n = 3. The right
sides are expressed in terms of elements of I13 . We can continue this process of obtaining
equations of the said form such that there is one equation for each standard Lie monomial
of lengths 4 and 5. We simply apply the appropriate map −ad X where X ∈ {A,B,C} to
both sides of each equation from (125) to (132). Use the relations (13) to (15) and those
which arise from the equality of each of (21) to (26) to Ω, with the goal of writing the
left side as a linear combination of elements of some filtration subspace, and the right side
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as a linear combination of elements of Imn for some m,n ∈ N. These steps will yield the
equations for length 4. If we do the procedures again to all equations obtained thus far, we
get those equations for length 5. We will not show all such equations here, only the ones
needed in order to prove (133). Denote these equations by Xi = Yi for 1 ≤ i ≤ 3 where the
left sides are

X1 = A3B −A2γ,

X2 = A2B2 +
(q4 + 1)Ω

q2
− (q4 + 1)C2 − 2B2 − (q4 + 1)A2

q4
,

X3 = AB3 −B2γ,

and the right sides for 1 ≤ i ≤ 3 are

Y1 =

[
BA3

]
q3(q − q−1)3

−
(q6 + 1)

[
CA2

]
q3(q − q−1)2

− (q2 − 2)(q + q−1)2 [BA]

q(q − q−1)

−(q + q−1)3C − (q + q−1)Aβ + (q + q−1)2γ,

Y2 =
−
[
BA2B

]
q4(q + q−1)(q − q−1)3

− [CAB]

q2(q − q−1)
+

(q2 + 2) [BA] γ

q2(q + q−1)(q − q−1)

− (q4 + q2 + 2)Cγ

q
− (q + q−1)Bβ − (q4 + 1)Aα

q3
+ γ2,

Y3 =

[
BAB2

]
q3(q − q−1)3

−
(q6 + 1)

[
CB2

]
q3(q − q−1)2

− (q2 − 2)(q + q−1)2 [BA]

q(q − q−1)

−(q + q−1)3C − (q + q−1)Bα+ (q + q−1)2γ.

We are now ready to prove Theorem 35.

Proof of Theorem 35. First, we claim that the following relation holds in ∆.[
BA2BC

]
(q + q−1)2(q − q−1)2

=
−
[
BAC2

]
+ 2 [CABC]

q − q−1

+
(q4 + 1)

([
BAB2

]
−
[
BA3

])
q2(q − q−1)

−
2(q6 − 1)

([
CB2

]
−
[
CA2

])
q3(q − q−1)

+
[BAC] γ

(q + q−1)2
+ [BAB]β +

[
BA2

]
α. (133)

Once we have established our claim, we argue as follows. To show (118), apply −ad A,
−ad B, −ad B, −ad C to both sides of (106),(108),(109),(110), respectively. Write all Lie
monomials in standard form. We get [

BA2
]
α = f1, (134)[

CA2
]
β = f2, (135)

[CAB] γ = f3, (136)
[BAC] γ + k [CAB] γ = f4, (137)

for some k ∈ F and some f1, f2, f3, f4 ∈ L. Eliminate
[
BA2

]
α,
[
CA2

]
β, [BAC] γ in (133)

using (134) to (137). The result is (118). Apply ρ, ρ2 to both sides of (118) in order to
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obtain (119),(120), respectively. We now show (121) holds. Add (116) and (117). We get

[CB]α+ [CA]β = g1 + g2, (138)

where g1, g2 are the right sides of (116),(117), respectively. Apply −ρ to both sides of (117).
We get

[CB]α+ [CA]β = g3, (139)

for some g3 ∈ L such that [[CAC] , [CB]] appears with nonzero coefficient in g3. Eliminate
[CB]α + [CA]β in (138),(139). We get (121) as desired. This completes the proof of the
theorem. We now prove our claim. We start with the equation X2 = Y2. Use (13) to express
A2B2 in X2 as a linear combination that involves ABAB. The resulting linear combination
in the left side involves ACB, which we eliminate using the fact that Ω is equal to (25). This
yields a linear combination in the left side that involves ABγ. To eliminate ABγ at this
stage, use the equation which arises from multiplying both sides of (122) by γ. Apply −ad C
on both sides of the resulting equation, and multiply both sides by q2. At this point, the
linear combination in the left side involves ABABC,CABAB. Consider ABABC. Since Ω
is equal to (21), we can write ABABC as a linear combination of

ABΩ, ABA2, AB3, ABC2, ABAα,AB2β,ABCγ.

Similarly, since Ω is equal to (23), we find that CABAB is a linear combination of

ABΩ, A3B,B2AB,C2AB,A2Bα,BABβ,CABγ.

When we write ABABC,CABAB in terms of such linear combinations, the coefficient of
ABΩ vanishes. The new linear combination in the left side contains the following vectors.

ABA2, ABAα, B2AB, BABβ, (140)
ABC2, C2AB, (ABC − CAB)γ. (141)

Use (13) to write each of (140) into a linear combination that involves

BA3, A2Bα, B3A, AB2β,

respectively. As for the vectors in (141), use the fact that Ω is equal to each of (21),(23)
in order to eliminate (ABC −CAB)γ, and in order to write ABC2 as a linear combination
of CΩ, A2C,B2C,C3, ACα,BCβ,C2γ, and in order to write C2AB as a linear combination
of CΩ, CA2, CB2, C3, CAα,CBβ,C2γ. After all these steps, call the resulting equation
X4 = Y4. Observe that the following appear in the linear combination for X4.

A3B, AB3, A2C, B2C, (142)
(B2 −A2)γ, A2Bα, AB2β, ACα, BCβ, (143)

BA3, B3A, (144)
CA2, CB2, (145)
CAα, CBβ. (146)

Consider A3B. We use the equation X1 = Y1 to eliminate A3B in X7. The equations needed
in order to eliminate the other vectors in (142) are X3 = Y3 and (126),(129). To eliminate
(B2 − A2)γ in X4, use the equation which arises from multiplying both sides of (130) by
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γ. We do similarly for the other vectors in (143), by using the appropriate equation from
(125) to (132), which we multiply both sides by the appropriate δ ∈ {α, β, γ}. To eliminate
BA3 in X4, use the equation which is the result of applying σ to both sides of X3 = Y3. We
keep in mind that after the application of σ (or any other element of PSL2(Z) which we
shall use in the succeeding steps), all Lie monomials are to be expressed in standard form.
Do similarly to X1 = Y1, and use the result to eliminate B3A. We do similarly for (145),
but we use ρ2 instead of σ to the equations (127),(131). Apply ρ2 to both sides of each of
(122),(123), and multiply both sides by α, β, respectively. This yields equations that we can
use to eliminate (146) in X4. Recall that in all these eliminations, all Lie monomials in the
equations used must be written in standard form. When all the vectors in (142) to (146)
have been eliminated, the result is (133). This completes the proof of the claim.

At this point we have shown that each of[
BA2BC

]
,
[[
CB2

]
, [CA]

]
,
[[
CA2

]
, [CB]

]
, [[CAC] , [CB]] , (147)

is linearly dependent on standard Lie monomials of length at most 5 that are not in (147).
In what follows, we shall show that the standard Lie monomials of length at most 5 except
(147) are linearly independent in ∆.

Proposition 36. The following hold in ∆.[
CA3B

]
− (q + q−1)(q − q−1)4A2Ω ∈ ∆4, (148)[

CA2B2
]
− q(q − q−1)4ABΩ ∈ ∆4, (149)[

CA2BC
]

+ q−1(q − q−1)4ACΩ ∈ ∆4, (150)[
BAB2C

]
+ (q + q−1)(q − q−1)4B2Ω ∈ ∆4, (151)[

BABC2
]

+ q(q − q−1)4BCΩ ∈ ∆4, (152)

[[CBC] , [CA]] + (q + q−1)(q − q−1)4C2Ω ∈ ∆4. (153)

Proof: Use Proposition 24 to show (148) to (152) hold. To show (153), set i = 2 in
(49). We get [

CA2
]
− q−2(q − q−1)2A2C ∈ ∆2. (154)

Applying −ρ2 to the element in (154) and using the fact that ∆2 is invariant under ρ, we
have

[CBC] + q−2(q − q−1)2C2B ∈ ∆2. (155)

Set i = 1 in (49). We get
[CA] + q−1(q − q−1)AC ∈ ∆1. (156)

By taking the Lie bracket of the elements in (155) and (156), we have

[[CBC] , [CA]]− q−3(q − q−1)3
(
C2BAC −AC3B

)
∈ ∆4. (157)

Using (14), it is routine to show that

C2A− q−4AC2 ∈ ∆2,

from which we obtain

(q − q−1)3
(
qC2ACB − q−3AC3B

)
∈ ∆4. (158)
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Combining (157) and (158), we obtain

[[CBC] , [CA]]− (q − q−1)3C2
(
q−3BAC − qACB

)
∈ ∆4. (159)

Using the fact that (25) and (26) are both equal to Ω, we have

(q + q−1)(q − q−1)Ω + q−3BAC − qACB ∈ ∆2. (160)

Finally, we get (153) from (159) and (160).

Proposition 37. For nonzero j, k ∈ N, the following hold in ∆.[
BA3Bj

]
− (−1)jq3(q6 − 1)j(q − q−1)3A3Bj+1 ∈ ∆j+3, (161)[

CA3Ck
]

+ q−3(2k+1)(q6 − 1)k(q − q−1)3A3Ck+1 ∈ ∆k+3, (162)[
CB3Ck

]
− (−1)kq3(q6 − 1)k(q − q−1)3B3Ck+1 ∈ ∆k+3. (163)

Proof: Use Proposition 22.

Lemma 38. Assume q is not a sixth root of unity. Fix a nonzero n ∈ N. The following
vectors are linearly independent in ∆ for any i, j, k ∈ N such that 1 ≤ i, j, k ≤ n.

1, A,B,C, (164)
[CAB] , [BAC] , (165)[

CA2B
]
, [BABC] , [[CB] , [CA]] , (166)[

CA3B
]
,
[
CA2B2

]
,
[
CA2BC

]
, (167)[

BAB2C
]
,
[
BABC2

]
, [[CBC] , [CA]] , (168)[

BAi
]
,
[
BABj

]
,
[
BA2Bj

]
,
[
BA3Bj

]
, (169)[

CAi
]
,
[
CACk

]
,
[
CA2Ck

]
,
[
CA3Ck

]
, (170)[

CBj
]
,
[
CBCk

]
,
[
CB2Ck

]
,
[
CB3Ck

]
. (171)

Proof: The proof is similar to that of Lemma 27. In order to construct the desired
upper triangular transition matrix, we combine the data from (90) to (103) to that in (148)
to (153), and (161) to (163). Recall that the transition matrix that can be constructed from
the data is upper triangular if the scalar coefficients of the leading terms are nonzero. Those
in (90) to (103) are nonzero as shown in the proof of Lemma 27. The scalar coefficients
in (148) to (153) are nonzero by the manner q is defined. Finally, the scalar coefficients in
(161) to (163) are nonzero since q is further assumed to be not a sixth root of unity.

Notation 39. Let Jn denote the set consisting of all the linearly independent vectors in
Lemma 38.

Lemma 40. Assume q is not a sixth root of unity. Fix nonzero m,n ∈ N. The vectors
Y αrβsγt are linearly independent in ∆ for any Y ∈ Jn and any r, s, t ∈ N such that
r + s+ t ≤ m.

Proof: The proof is similar to that of Lemma 27. For each of the data used in the
proof of Lemma 38, which are (90) to (103), (148) to (153), and (161) to (163), multiply
the element by αrβsγt and add r + s+ t to the index of the filtration subspace. Use these
new data to construct a similar upper triangular transition matrix.
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Notation 41. Let Jm
n denote the set consisting of all the linearly independent vectors in

Lemma 40. Observe that the vectors

[CB] γ, [BA]β, [CA]α, [CB]β, [CA] γ, [BA]α, (172)

are in J 1
4 . Let J ∗ denote the set obtained from J 1

4 by replacing the vectors in (172) by the
following vectors[

CAB2
]
,
[
BA2C

]
, [CABC] ,

[
BAC2

]
, [[CA] , [BA]] , [[CB] , [BA]] . (173)

Lemma 42. Assume q is not a sixth root of unity. The vectors in J ∗ are linearly indepen-
dent in ∆.

Proof: The proof is similar to that of Lemma 32.

Proposition 43. Assume q is not a sixth root of unity. If V is a subspace of Span J ∗ such
that

Span J ∗ = V + Span J 0
4 , (direct sum)

then a basis for V is J ∗\J 0
4 .

Proof: This follows from the fact that J ∗,J 0
4 are both linearly independent sets and

that J 0
4 ⊂ J ∗.

Lemma 44. The following hold in ∆.

[CAC]α+

[
CABC2

]
(q − q−1)2

∈ Span J 0
4 , (174)

[CBC]β −
[
BAC3

]
(q − q−1)2

+

[
CABC2

]
(q − q−1)2

∈ Span J 0
4 , (175)

[
BA2

]
γ −

(q6 − 1)
[[
BA2

]
, [BA]

]
q3(q − q−1)3

∈ Span J 0
4 , (176)

[BAB] γ +
(q + q−1)2 [[BAB] , [BA]]

(q − q−1)2
∈ Span J 0

4 , (177)

[
CA2

]
β −

(q6 − 1)
[[
CA2

]
, [CA]

]
q3(q − q−1)3

∈ Span J 0
4 , (178)

[CAC]β +
(q + q−1)2 [[CAC] , [CA]]

(q − q−1)2
∈ Span J 0

4 , (179)

[
CB2

]
α−

(q6 − 1)
[[
CB2

]
, [CB]

]
q3(q − q−1)3

∈ Span J 0
4 , (180)

[CBC]α+
(q + q−1)2 [[CBC] , [CB]]

(q − q−1)2
∈ Span J 0

4 . (181)

Proof: Apply −ad C to both sides of (111),(107) and write all Lie monomials in
standard form in order to get (174),(175), respectively. To get (176),(177), we first show
that the equation[

BA2
]
γ

2(q + q−1)2
=

(q6 − 1)
[[
BA2

]
, [BA]

]
2q3(q + q−1)2(q − q−1)3

−
[
BA3B

]
2(q + q−1)2(q − q−1)2
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−
[[CA] , [BA]] +

[
BA2C

]
2(q − q−1)

+ [CAC]− [BAB] (182)

holds in ∆. In view of Remark 10, write each of the left and right sides of (182) as a linear
combination of irreducible ∆-words. This yields the same linear combination of the basis
vectors (16) of ∆. This proves (182), from which (176) follows. To prove (177), apply σ to
both sides of (182). We obtain

[BAB] γ

2(q + q−1)2
=
− [[BAB] , [BA]]

2(q − q−1)2
−

[
BA2B2

]
2(q + q−1)2(q − q−1)2

+
[[CB] , [BA]] + [BABC]

2(q − q−1)
− [CBC]−

[
BA2

]
, (183)

from which (177) follows. Finally, to prove (178) to (181), apply ρ, ρ2 to both sides of
(182),(183).

Notation 45. Observe that the vectors

[CAC]α, [CBC]β,
[
BA2

]
γ, [BAB] γ, (184)[

CA2
]
β, [CAC]β,

[
CB2

]
α, [CBC]α, (185)

are in J ∗. Let K0 denote the set obtained from J ∗ by replacing the vectors in (184),(185)
by the vectors [

CABC2
]
,
[
BAC3

]
,
[[
BA2

]
, [BA]

]
, [[BAB] , [BA]] , (186)[[

CA2
]
, [CA]

]
, [[CAC] , [CA]] ,

[[
CB2

]
, [CB]

]
, [[CBC] , [CB]] . (187)

Lemma 46. Assume q is not a sixth root of unity. The vectors in K0 are linearly indepen-
dent in ∆.

Proof: We use Lemma 44 in order to obtain a transition matrix from the vectors in
J ∗ into the vectors in K0. Denote each of (174) to (181) by

Mi + fi ∈ Span J 0
4 ,

where 1 ≤ i ≤ 8, the vector Mi is an element of J ∗ that is to be replaced in order to form
K0, while the standard Lie monomials that appear in fi are the replacements. Using the
usual ordering of standard Lie monomials, define M i as the largest standard Lie monomial
in fi. Let j, k ∈ N, with 1 ≤ j, k ≤ 8. Observe that if Mj 6= Mk then M j 6= Mk. Observe
also that Mi ∈ J ∗\J 0

4 for 1 ≤ i ≤ 8. By Proposition 43, the coefficient of Mi in fi is −1
for all i. By these observations, it follows that there exists an upper triangular transition
matrix from the vectors in J ∗ into the vectors in K0 with nonzero diagonal entries. These
diagonal entries are precisely the scalar coefficients of M i for all i. These coefficients are
all nonzero since q is assumed to be not a sixth root of unity. Since the vectors in J ∗ are
linearly independent, the existence of a transition matrix just described implies that the
vectors in K0 are also linearly independent.

Theorem 47. Assume q is not a sixth root of unity. The standard Lie monomials of L of
length at most 5 except the vectors from (147) form a basis for L5.

Proof: Let K denote the set obtained from K0 by replacing the vectors

[BAC] γ, [CAB] γ, [BAB]β,
[
BA2

]
α, (188)
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[
BA2

]
β,
[
CA2

]
γ, [CA]β, (189)

[BAC]β, [CAC] γ,
[
CA2

]
α, [CAB]β, (190)[

CB2
]
γ, [CB]α, [BAB]α, (191)

[CAB]α,
[
CB2

]
β, [BAC]α, [CBC] γ, (192)

by the vectors

[[CAB] , [BA]] , [[BAC] , [BA]] , [[BAB] , [CA]] ,
[[
BA2

]
, [CB]

]
, (193)[

BA3C
]
,
[[
CA2

]
, [BA]

]
,
[[
BA2

]
, [CA]

]
, (194)[

BA2C2
]
, [[CAC] , [BA]] , [[CAB] , [CA]] , [[BAC] , [CA]] , (195)[

CAB3
]
,
[[
CB2

]
, [BA]

]
, [[BAB] , [CB]] , (196)[

CAB2C
]
, [[CBC] , [BA]] , [[CAB] , [CB]] , [[BAC] , [CB]] . (197)

We claim thatK is linearly independent. Observe that all vectors mentioned in the statement
of the theorem are in K. By Theorem 35, the vectors in (147) are linearly dependent on
these vectors. The result follows. We now prove our claim. We construct five more sets in a
manner similar to the construction of J ∗ from J 1

4 and to that of K0 from J ∗. The goal is
that at each step, we prove that the constructed set is linearly independent. Let K1 denote
the set obtained from K0 by replacing the vectors (188) in K0 by the vectors (193). Let K2

denote the set obtained from K1 in a similar manner until K5, which is obtained from K4 by
replacing the vectors (192) in K4 by the vectors (197). Observe that K5 = K. We show that
each of K1, . . . ,K5 is a linearly independent set in ∆. Apply −ad A,−ad B,−ad B,−ad A
to both sides of (110),(108),(109),(106), respectively. Write all Lie monomials in standard
form. We get

[BAC] γ + k [CAB] γ = f1, (198)
[CAB] γ = f2, (199)
[BAB]β = f3, (200)[
BA2

]
α = f4, (201)

for some k ∈ F and some f1, f2, f3, f4 ∈ L. Eliminate
[
BA2BC

]
in (198),(200),(201) using

the relation (118). Solve the resulting system in order to obtain

[BAC] γ = g1, (202)
[CAB] γ = g2, (203)
[BAB]β = g3, (204)[
BA2

]
α = g4, (205)

where each of g1, . . . , g4 ∈ L, is a linear combination of

[[CAB] , [BA]] , [[BAC] , [BA]] , [[BAB] , [CA]] ,
[[
BA2

]
, [CB]

]
,

together with the vectors in K0. We use the equations (202) to (205) to construct a transtion
matrix T1 from the vectors in K0 into those in K1. Index the columns of T1 such that the
last 4 correspond to (188), while index the rows such that the last 4 correspond to (193).
We find that T1 has the form

T1 =

[
I1 U1

0 L1

]
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where I1 is an identity matrix, U1 is some matrix with 4 columns, and L1 is a 4× 4 matrix,
with

detL1 = − 1

2(q + q−1)2(q − q−1)8
6= 0,

which implies that detT1 6= 0. Thus, K1 is linearly independent. For 2 ≤ i ≤ 5, we can
also construct a transtion matrix Ti from the vectors in Ki−1 into those in Ki in a similar
manner. The equations that can be used to construct Ti are also derived from (106) to (111)
with the application of the appropriate map ad X where X ∈ {A,B,C}. Furthermore, we
find that Ti can be partitioned into four matrices similar to T1, and that if we denote the
bottom right partition as Li, then

1

(q − q−1)7
= − detL2 = detL4 6= 0,

1

(q − q−1)8
= −detL3 = −detL5 6= 0,

which imply that Ti is invertible for 2 ≤ i ≤ 5. Therefore, K5 = K is a linearly independent
set in ∆.
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