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Abstract

A dominating set for a graph Γ(V,E) with vertex set V and edge set E, is a subset
D of V such that for every v ∈ V \D there exists w ∈ D with {v, w} ∈ E. We determine
all subgroups of the dicyclic group Dicn = 〈a, x : a2n = 1, x2 = an, x−1ax = a−1〉 of
order 4n, n > 1, that form dominating sets for the Cayley graph of Dicn with respect to
a minimal symmetric generating set. We also give some results on efficient domination
in the graphs considered.
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1 Introduction
A dominating set of vertices for a graph Γ(V,E) with vertex set V and edge set E, is a
subset D of V such that for every v ∈ V \D there exists w ∈ D with {v, w} ∈ E. An
efficient dominating set is a dominating set D with the property that no two vertices of
D are adjacent and every vertex in the graph is adjacent to exactly one element in D.
Dominating sets are studied in graph theory for various reasons, notably in relation to
network connection theory. Efficient dominating sets are also studied in coding theory.

Dominating sets of Cayley graphs of Zn were studied by Chelvam and Rani [2]. They
computed the domination number of Cay(Zn, A) and a minimal dominating set whenever |A|
is even. Chelvam and Mutharasu investigated subgroups of Zn that form efficient dominating
sets for some of its Cayley graphs [1]. A paper of Ma focused on the isomorphism of Cayley
digraphs of the dicyclic group [6]. These papers motivated this study.
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We recall the definition of a Cayley graph of a group. A subset X of group G is called
a generating subset if G = 〈X〉. We say X is inverse-symmetric whenever g ∈ X implies
g−1 ∈ X. A Cayley graph Cay(G,X) of a group G with respect to subset X is a graph
with vertex set G and edge set {{a, b} | b = ax for somex ∈ X} [5]. To obtain a simple
connected undirected Cayley graph, we use a symmetric generating subset X not containing
the identity. A Cayley graph encodes the algebraic structure of the group.

We consider in this paper the Cayley graph of the group Dicn = 〈a, x : a2n = 1, x2 =
an, x−1ax = a−1〉. This group is the dicyclic group of degree n, sometimes called a gen-
eralized quaternion group [7]. It can be proven that |Dicn| = 4n. Our main result is the
classification of all subgroups of Dicn that form dominating sets for Cay(G,S), for some
minimal inverse-symmetric generating subset S not containing the identity.

The findings of this paper are dependent on the classification of subgroups of the dicyclic
group, as may be found in [3]. We state the subgroup classification below.

Proposition 1. Let n ≥ 2 and Dicn = 〈a, x : a2n = 1, x2 = an, x−1ax = a−1〉 be the
dicyclic group of order 4n. Then every subgroup of Dicn is one of the following:

i. cyclic group 〈a 2n
r 〉, of order r, where r is a divisor of 2n;

ii. cyclic group 〈aix〉 of order 4, where i ∈ {1, ..., n};

iii. dicyclic groups 〈anr , aix〉 of order 4r, where r is a divisor of n, i ∈
{

1, ..., nr
}
.

We note that 〈aix〉 =
{
aix, an, an+ix, 1

}
for any choice of n ≥ 2. We now state the main

result of this paper.

Theorem 2. Let n ≥ 2 and Dicn = 〈a, x : a2n = 1, x2 = an, x−1ax = a−1〉 be the dicyclic
group of order 4n. Let Sδ,i = {a, a2n−(−1)δ2ix, a2n−1, an−(−1)δ2ix} where δ ∈ {0, 1} and
i ∈ {0, 1, 2, ..., 2n− 1}, and Cay(Dicn, Sδ,i) be the Cayley graph with respect to Sδ,i. If K is
a proper subgroup of Dicn, then K is a dominating set of Cay(Dicn, Sδ,i) if and only if K
is one of the following:

i. 〈a〉;

ii. 〈a2〉 where n is odd;

iii. 〈a(−1)δ(t−2i)x〉 for n = 2, 3 and any t ∈ {0, 1, 2, ..., 2n− 1};

iv. 〈a(−1)δ(2−2i)x〉 for n = 4;

v. 〈a2, a(−1)δ(t−2i)x〉 where n is even and t ∈ {1, 2};

vi. 〈a3, a(−1)δ(t−2i)x〉 where 3 divides n and t ∈ {1, 2, 3};

vii. 〈a4, a(−1)δ(2−2i)x〉 where 4 divides n.
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2 Proof of the Main Theorem
The proof of the main theorem will be presented after a series of lemmas. We will start
by classifying all proper subgroups of Dicn which are dominating sets for the Cayley graph
with respect to the subset X =

{
a, x, a2n−1, anx

}
.

Lemma 3. Let n ≥ 2 and Dicn = 〈a, x : a2n = 1, x2 = an, x−1ax = a−1〉 be the di-
cyclic group of order 4n. Let H = 〈a〉. Then H is a dominating set for the Cayley
graph Cay(Dicn, X). Moreover, any right coset of H in Dicn is also a dominating set
for Cay(Dicn, X).

Proof: If v ∈ Dicn\H then v = aix for some i ∈ {0, 1, 2, ..., 2n− 1}. Now,

vanx = aixanx = aianx2 = ai ∈ H.

Hence, {v, vanx} ∈ E(Cay(Dicn, X)). Now, suppose v ∈ Dicn\Hx. It follows that v = ai

for some i ∈ {0, 1, 2, ..., 2n− 1} and vx = aix ∈ Hx.

Lemma 4. Let n ≥ 2 be odd and H = 〈a2〉. Then H is a dominating set for the
graph Cay(Dicn, X). Moreover, any right coset of H in Dicn is also a dominating set
for Cay(Dicn, X).

Proof: The proof follows a similar computation as in the proof of Lemma 3.

Lemma 5. Let Dicn be the dicyclic group of order 4n and H = 〈aix〉 for i ∈ {0, 1, . . . , 2n− 1}.
If n ∈ {2, 3} then H is a dominating set for the graph Cay(Dicn, X). If n = 4 then only
the subgroup 〈a2x〉 forms a dominating set for Cay(Dicn, X).

Proof: It is a matter of computational verification to show that H = 〈aix〉 for every
i ∈ {0, 1, . . . , 2n− 1} becomes a dominating set for the Cayley graph Cay(Dicn, X) for
n = 2, 3. We can also easily verify that only the case i = 2 satisfies the domination
requirement for n = 4.

Lemma 6. Let n ≥ 2 be an even integer and H = 〈a2, aix〉 where i ∈ {1, 2}. Then H is a
dominating set for the graph Cay(Dicn, X). Moreover, any right coset of H in Dicn is also
a dominating set for Cay(Dicn, X).

Proof: The proof follows a similar computation as in the proof of Lemma 3.

Lemma 7. Let 3 divide n and Dicn be the dicyclic group of order 4n. Let H = 〈a3, aix〉
where i ∈ {1, 2, 3}. Then H is a dominating set for the graph Cay(Dicn, X). Moreover,
any right coset of H in Dicn is also a dominating set for Cay(Dicn, X).

Proof: Let n = 3k where k ∈ Z+. Then X =
{
a, x, a6k−1, a3kx

}
. The rest of the proof

is similar to the proof of Lemma 3.

We note that the subgroup 〈a3, a3x〉 above has the property that every element outside
this subgroup is adjacent to exactly one element in the subgroup. These dominating sets
are called perfect dominating sets.
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Lemma 8. Let 4 divide n and Dicn be the dicyclic group of order 4n. Let H = 〈a4, a2x〉.
Then H is a dominating set for Cay(Dicn, X). Moreover, any right coset of H is also a
dominating set for Cay(Dicn, X).

Proof: Let n = 4k where k ∈ Z+. Then X =
{
a, x, a8k−1, a4kx

}
. The rest of the proof

is similar to the proof of Lemma 3.

We now show that only the subgroups above can be dominating sets for Cay(Dicn, X)
where X =

{
a, x, a2n−1, anx

}
.

Lemma 9. Let n ≥ 2 be an even integer and Dicn the dicyclic group of order 4n. Then
〈a2〉 is not a dominating set for Cay(Dicn, X).

Proof: Consider a2n−1x ∈ Dicn. Then we have the following:

a. (a2n−1x)a = a2n−1(xa) = a2n−1a2n−1x = a2n−2x /∈ 〈a2〉;

b. (a2n−1x)a2n−1 = a2n−1(xa2n−1) = a2n−1ax = x /∈ 〈a2〉;

c. (a2n−1x)anx = a2n−1(xan)x = a2n−1anx2 = a2n−1 /∈ 〈a2〉;

d. (a2n−1x)x = a2n−1x2 = an−1 /∈ 〈a2〉.

This proves the lemma.

Lemma 10. Let n ≥ 2 and Dicn the dicyclic group of order 4n. If i ∈ Z such that i ≥ 3
and i divides 2n, then 〈ai〉 is not a dominating set for Cay(Dicn, X).

Proof: Consider a2n−1x ∈ Dicn. Then we have the following:

a. (a2n−1x)a = a2n−1(xa) = a2n−1a2n−1x = a2n−2x /∈ 〈ai〉;

b. (a2n−1x)a2n−1 = a2n−1(xa2n−1) = a2n−1ax = x /∈ 〈ai〉;

c. (a2n−1x)anx = a2n−1(xan)x = a2n−1anx2 = a2n−1 /∈ 〈ai〉.

Suppose (a2n−1x)x = a2n−1x2 = an−1 ∈ 〈ai〉. It follows that i divides n − 1. There
exists an integer m such that n − 1 = mi holds modulo 2n. Now, 2n − mi = n + 1 and
so i also divides n + 1. Since n + 1 = mi + 2, then i divides 2. This is absurd. Hence,
an−1 /∈ 〈ai〉.

Lemma 11. Let n ≥ 5 and Dicn the dicyclic group of order 4n. If i ∈ Z such that i ≥ 5 and
i divides n, then 〈ai, ajx〉 where j ∈ {1, 2, ..., i} is not a dominating set for Cay(Dicn, X).

Proof: For j 6= 2, we consider a2 ∈ Dicn. We have the following:

a. a2a = a3 /∈ 〈ai, ajx〉;

b. a2a2n−1 = a /∈ 〈ai, ajx〉.

Assume a2(anx) = an+2x ∈ 〈ai, ajx〉. Then there exists an integer i◦ such that an+2x =
aii◦+jx and so n + 2 ≡ ii◦ + j(mod 2n). It means that n + 2 − ii◦ − j = 2nm for some
integer m. This will imply that i divides j − 2 which is absurd. If a2x ∈ 〈ai, ajx〉 then
2 ≡ ii◦ + j(mod 2n). As above, i will divide j − 2 which is impossible.

For j = 2, we can also show that a3 cannot be dominated by 〈ai, ajx〉.
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Lemma 12. Let 4 divide n and Dicn be the dicyclic group of order 4n. Then 〈a4, ajx〉 is
not a dominating set for Cay(Dicn, X) for j ∈ {1, 3, 4}.

Proof: Let n = 4k. Since j 6= 2, we can consider a2 ∈ Dicn. We have the following:

a. a2a = a3 /∈ 〈a4, ajx〉;

b. a2a2n−1 = a /∈ 〈a4, ajx〉.

If a2(anx) = an+2x ∈ 〈a4, ajx〉, then there exists an integer i such that 4k + 2 ≡
4i+ j(mod 2n). Thus, there exists an integer m where 4k + 2− 4i− j = 8km. This means
that 2 divides j. We only have one choice and that is j = 4. Now, 4k− 4i− 2 = 8km which
is a contradiction and so an+2x /∈ 〈a4, x〉. If a2x ∈ 〈a4, ajx〉, then 2 ≡ 4i + j(mod 2n) for
some integer i. Again, 2 divides j as above and we will get an inconsistency. Therefore,
a2x /∈ 〈a4, x〉.

We define the closed neighborhood of v in V by N [v] = {w ∈ V : {v, w} ∈ E}
⋃
{v}.

Lemma 13. Let n ≥ 5 and Dicn be the dicyclic group of order 4n. Then 〈aix〉 is not a
dominating set for Cay(Dicn, X).

Proof: It is a simple computation for n = 5. Assume n > 5. For 〈aix〉 to domi-

nate Cay(Dicn, X), we must have Dicn =

4⋃
j=1

N [(aix)j ]. However, we have the following

inequalities

|
4⋃
j=1

N [(aix)j ]| ≤
4∑
j=1

|N [(aix)j ]| = 20 < 4(6) ≤ 4n = |Dicn|.

Thus, 〈aix〉 cannot be a dominating set for this Cayley graph.

We now collect the properties to prove the following proposition.

Proposition 14. Let n ≥ 2 and Dicn = 〈a, x : a2n = 1, x2 = an, x−1ax = a−1〉 be the
dicyclic group of order 4n. Let Cay(Dicn, X) be the Cayley graph with respect to X ={
a, x, a2n−1, anx

}
. If H is a proper subgroup of Dicn, then H is a dominating set for

Cay(Dicn, X) if and only if H is one of the following:

i. 〈a〉;

ii. 〈a2〉 where n is odd;

iii. 〈aix〉 for n = 2, 3 and any i ∈ {0, 1, 2, ..., 2n− 1};

iv. 〈a2x〉 for n = 4;

v. 〈a2, aix〉 where n is even and i ∈ {1, 2};

vi. 〈a3, aix〉 where 3 divides n and i ∈ {1, 2, 3};

vii. 〈a4, a2x〉 where 4 divides n.
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Proof: SupposeH is a proper subgroup ofDicn. Proposition 1 restricts the possibilities
for H. Lemmas 3 through 8 show that if H is one of the subgroups listed in Proposition
14 then H is a dominating set for Cay(Dicn, X). On the other hand, Lemmas 9 through
13 prove that only the subgroups in the list can form dominating sets for their respective
Cayley graphs.

We now present a proof of the main result of this paper.

Proof of Theorem 2:

Let f : G1 → G2 be an isomorphism of groups and Y be an inverse-symmetric generating
subset of G1 not containing the identity. It follows immediately that f [Y ] is also an inverse-
symmetric generating subset for G2 not containing the identity. We can show that if D is a
dominating set for the Cayley graph Cay(G1, Y ) then f [D] must also be a dominating set
for the Cayley graph Cay(G2, f [Y ]). In the same way we can verify that for a dominating
set D′ for Cay(G2, f [Y ]), the inverse image f−1[D′] is a dominating set for Cay(G1, Y )
where f [f−1[D′]] = D′.

Now, observe that Sδ,i = {a, a2n−(−1)δ2ix, a2n−1, an−(−1)δ2ix} = Xaixδ where δ ∈ {0, 1}
and i ∈ {0, 1, 2, ..., 2n− 1}. Note that conjugation of a group by any of its elements gives an
automorphism of the group. Consequently, if D is a dominating set of Cay(Dicn, X) then
Daixδ is a dominating set for Cay(Dicn, Sδ,i) and any dominating set of Cay(Dicn, Sδ,i)
is a conjugate of a dominating set of Cay(Dicn, X) by aixδ. Using Proposition 14, some
well-known facts on conjugation, and the following computations on the dicyclic group:

i. (at)a
ixδ = a(−1)

δt;

ii. (atx)a
ixδ = a(−1)

δ(t−2i)x,

our main theorem is now proved.

3 Remarks on Efficient Domination
Recall that an efficient dominating set of a graph Γ(V,E) is a dominating set D such that
for every x ∈ V , |N [x] ∩ D| = 1. We conclude this paper with some findings on efficient
domination in the Cayley graphs of the dicyclic group.

Proposition 15. Let n ≥ 2 and Dicn = 〈a, x : a2n = 1, x2 = an, x−1ax = a−1〉 be the
dicyclic group of order 4n. Then Cay(Dicn, X), where X =

{
a, x, a2n−1, anx

}
, has no

efficient dominating set.

Proof: The result is easily verified for n ∈ {2, 3} by checking the corresponding graphs.
Assume n ≥ 4. Suppose D is an efficient dominating set of Cay(Dicn, X). Without
loss of generality, assume 1 ∈ D. It follows that {a, a2, ax} ∩ D = ∅. If a3 ∈ D then
{a, a2, x, ax, a2x, a3x} ∩ D = ∅. Since D dominates the graph, then {an+1, an+2} ⊆ D.
This implies that |N [an+1]∩D| ≥ 2 which contradicts the definition of efficient domination.
If a3x ∈ D then {a, a2, a3, x, ax, a2x}∩D = ∅. This means that {an+1, an+2x} ⊆ D. Thus,
|N [an+2]∩D| ≥ 2 which is absurd. Finally, if a2x ∈ D then {an, an+1, an+2, an+1x, ax}∩D =
∅. This contradicts the fact that D is a dominating set. All other options for the el-
ement in D immediately following 1 will give either {a, a2, x, ax, a2x, a3x} ∩ D = ∅ or
{a, a2, a3, x, ax, a2x} ∩D = ∅.
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Corollary 16. Let n ≥ 2 and Dicn = 〈a, x : a2n = 1, x2 = an, x−1ax = a−1〉 be the
dicyclic group of order 4n. Let Sδ,i = {a, a2n−(−1)δ2ix, a2n−1, an−(−1)δ2ix} where δ ∈ {0, 1}
and i ∈ {0, 1, 2, ..., 2n− 1}. Then the graph Cay(Dicn, Sδ,i) does not have an efficient
dominating set.

Proof: Let f : G1 → G2 be a group isomorphism andX an inverse-symmetric generating
subset of G1 not containing the identity. Recall from the proof of Theorem 2 that if D is
a dominating set of Cay(G1, X), then so is f [D] with respect to Cay(G2, f [X]). We now
show that if D is an efficient dominating set, then so is f [D]. Assume, on the contrary, that
there exists y ∈ G2 with |N [y] ∩ f [D]| ≥ 2. It follows that we can find distinct y1 and y2
in N [y] ∩ f [D]. If y /∈ {y1, y2} then we have x′1, x′2 ∈ f [X] where yj = yx′j (j ∈ {1, 2}).
Also, there exist d1, d2 ∈ D such that yj = f(dj) (j ∈ {1, 2}). By the isomorphism of f ,
we have x ∈ G1;xj ∈ X where y = f(x) and x′j = f(xj) for j ∈ {1, 2}. Now, d1 6= d2 and
xxj = dj (j ∈ {1, 2}). Hence, |N [x] ∩ D| ≥ 2 which is absurd. The case y ∈ {y1, y2} is
treated similarly.

As before, Sδ,i = {a, a2n−(−1)δ2ix, a2n−1, an−(−1)δ2ix} = Xaixδ and conjugation gives an
automorphism of the group G. By Proposition 15, the graph Cay(G,Sδ,i) cannot have an
efficient dominating set.
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