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Abstract

Let H, be the set of all nonsingular Hermitian matrices in M, (C). Let H € H,
be given. Define Ay : M, (C) — M, (C) by Ag(A) = H*A*H. We say that an
A € M, (C) is Ag-symmetric if Ag(A) = A. Let A = SJS™ ! be such that J is the
Jordan Canonical Form of A. We show that there exists a nonsingular P € M, (C)
such that P*H P has the same block structure as J. Let

Ga ={HE H, : Ais Ag — symmetric},

and let G € Ga be given. We also determine the possible inertia of G.
Key words: Apg-symmetric matrices

1 Introduction

Let M, m (F) be the set of all n-by-m matrices over F = C or F = R. When m = n, we write
M, (F) = M, , (F). Let H, be the set of all nonsingular Hermitian matrices in M, (C).
Let H € H,, be given. Define Ay : M,, (C) — M,, (C) by Ag(A) = H-1A*H. One checks
that for A,B € M, (C), we have Ay (AB) = Ay (B) A (A) and that Ay (Ag (4)) = A.
We say that an A € M,, (C) is Agy-symmetric if Ag(A) = A.

When H = I, the Apg-symmetric matrices are the Hermitian matrices. We note that
A p-symmetric matrices are also called H-self adjoint matrices [2]. They are used in iden-
tifying spectral properties of matrix polynomials with Hermitian coefficients and in solving
continuous algebraic Ricatti equations.
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We let J, (A) € M, (C) be the (upper triangular) Jordan block corresponding to the
eigenvalue \. Let A € M, (C) be given. There exists an H € H,, such that A is Ag-
symmetric if and only if A is similar to a real matrix [4, Theorem 4.1.7], so that the Jordan
Canonical Form of A, say J, contains only blocks of the form (i) J; (a) with a € R, or (ii)
I (N)@Jx (X) with A ¢ R. Tt is known that H is *congruent to a block diagonal matrix that
is conformal to J [1, Theorem 2.1]. This result is attributed to Weierstrass and Kronecker
and the proof uses matrix pencils. We present an elementary approach.

Let H € M, (C) be Hermitian. The inertia of H is the ordered triple of nonnegative
integers i(H) = (i (H),i—(H),io(H))where iy (H),i_(H) and ig(H) are respectively the
number of positive, negative and zero eigenvalues of H, counting multiplicities. If i(H) =
(p,q,r), then i(—H) = (¢q,p,r). Suppose that A, B € M,, (C) are both Hermitian. Then
A@® B is also Hermitian. Moreover, if i (A) = (p1,q1,71) and if i (B) = (p2, g2, 2), then i(A®
B) = (p1 +p2,q¢1 + q2,71 + 1r2). For Hermitian H,G € M, (C), there exists a nonsingular
X € M, (C) such that H = X*GX if and only if i (H) = ¢ (G) [4, Theorem 4.5.8].

We are also interested in the following problem. Let A € M, (C) be given. Suppose that
there exists an H € H,, such that A is Ag-symmetric. Let G4 = {H€ H,, : A is Ay — symmetric},
and let G € G4 be given. We wish to determine the possible inertia of G.

Let H € H, be given. Let X € M, (C) be nonsingular. Then X*HX € H,.
Let A € M, (C) be given. One checks that A = H 'A*H if and only if X 1AX =
(X*HX)™! (X*IAX)*(X*HX), that is, A is Ag-symmetric if and only if X 1AX is
A (x~ g x)-symmetric.

1.1 Notation

We denote the set of positive integers by N.  Let n € N be given. For A € M, (C),
we denote the spectrum of A by o(A). We define the n-by-n backward identity matrix

1 ifitj=n+1
771 0 otherwise

Notice that B,, € H, and that B, ' = B,,. The eigenvalues of B, are 1 and —1. If n = 2k
is even, then tr(B,) = 0 and i(B,) = (k,k,0). If n =2k+ 1 is odd, then tr(B,) =1 and
i(By) = (k+1,k,0).

Let A = [a;5] € M, (C) be given. Then B,AB, = [ant1—int+1—j]- In particular, we
have By,J, (A\) Bn = (J,, (\))", so that for every nonnegative integer k, we have

(2. 007 By = B, (2, W) 1)

We use the convention that when k = 0, we have (.J,, (\))* = I,,. Now, notice that B,,J, (0)
is a matrix with 1 in the diagonal just below the nonzero diagonal of B,, and 0 elsewhere.
In general, B, J! (0) is a matrix with 1 in the r** diagonal (1 < r < n—1) below the nonzero
diagonal of B,, and 0 elsewhere. Moreover, J! (0) B,, is a matrix with 1 in the 7" diagonal
(1 <r <n-—1) above the nonzero diagonal of B,, and 0 elsewhere.

Definition 1. Let @ = [a; -+ an)” € C" be given. Then
1. Ty (@) =20 aiJi1(0) s called upper Toeplitz.

2. Tr(@) = B,Ty(d)Bn = S0 ai (Ji7! (O))T is called lower Toeplitz.
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o o0 -- 0 ay
0 0 tee aq a9
3. Hp(d) = B,Ty(d) = L a : | € M, (C) is called lower Hankel.
0 a1 v V  apa
a; ay -+ QAp—1 Qp

4. Hy(d) =Ty (d)B, is called upper Hankel.

Let A, B € M,, (C) be given. We say that A is congruent to B if there exist nonsingular
X,Y € M, (C) such that A = XBY. One checks that congruence is an equivalence relation
in M,, (C). Moreover, if A and B are congruent, then either both are singular or both are
nonsingular. In fact, A is congruent to B if and only if A and B have the same rank.

For each @ € C", notice that Ty (@), Tr(@), Hr(@), and Hy (@) are all congruent. If
@ =ay--- an]", then Ty (@) is nonsingular if and only if a; # 0. Notice that a lower or
an upper Hankel matrix is symmetric, and hence, is Hermitian if and only if d €R™. The
set of all upper Toeplitz matrices is a subspace of M, (C). Moreover, a product of upper
Toeplitz matrices is an upper Toeplitz matrix. Each respective set (that is, the set of lower
Toeplitz, the set of lower Hankel, and the set of upper Hankel) is a subspace of M, (C).
However, the product of two lower Hankel matrices is not necessarily lower Hankel.

Let 7,7 € C" be given. Then TU(ﬁ)HU(?) = TU(ﬁ)TU(?)Bn is upper Hankel.
The following table gives the type of product achieved when a type of factor on the first
column is multiplied to a type of factor on the top row. In [3], a similar table for products
of triangular matrices is given.

Proposition 2. Let Hy, be a lower Hankel matriz, let Hy be an upper Hankel matriz, let
Ty, be a lower Toeplitz matriz, and let Ty be an upper Toeplitz matriz. Then we have the
following multiplication table for the form of products of matrices. The column on the left
represents the left factor of the product, while the top row represents the right factor of the
product.

e |H, Hy T, Tu

Hy, Ty, Hy,
Hy | Tu Hy
Ty, | Hy Tp
Ty Hy Ty

Let A € M, (C) be upper Toeplitz and let B € M, (C) be lower Hankel. Then AT is
lower Toeplitz, BA is lower Hankel, and AT BA is lower Hankel.

Let n and m be given integers with n > m. Let T" € M,, (C) be lower Toeplitz. Set
A=[T0] € My, (C). Let k be an integer with k¥ < m. Write A = { ;1 79 ], with
2 13

T3 € My, (C), and notice that T3 is also lower Toeplitz.

Lemma 3. Let n,mq, and my be given integers with n > mq > mo. Let Ty € M,,, (C)
be lower Toeplitz and let Hy € M,,, (C) be lower Hankel. Let T = [T} 0] € My, » (C) and
let H = [}(}J € Mym, (C). Then TH = [}(}J € My, my (C) and Hy € My, (C) is lower
Hankel.
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Proof:  Write T :{% 19}, with Ty € My, (C). Then Ty is lower Toeplitz and
3 1a
TH = {T(I)‘I ] . Proposition 2 guarantees that Ho = T4 H; is lower Hankel.
411

Let n > m be given integers. Let H; € M,, (C) be lower Hankel, and set H =
[ i, } € Mym(C). Write B, = [ B, 0 Then, B,H = 0
that B, H; is upper Toeplitz. Conversely, let Ty € M, (C) be upper Toeplitz, and set
A . _ 0 Bp-m _ 0

T = 0 € M, (C). Write B, = [ B, 0 . Then, B,T = B, T, ]
and that B,,T; is lower Hankel. Suppose n < m. Let H; € M, (C) be lower Hankel
and let H = [0 H1] € M, ,(C). Then B,H = [0 B, H], and that B, H; is upper
Toeplitz. Conversely, if Ty € M, (C) is upper Toeplitz and if ' = [0 T1] € M, 1, (C), then
B,T = [0 B, T1] and that B,T; is lower Hankel.

and

Lemma 4. Let n and m be given integers with n > m. Let Hy € M, (C) be lower Hankel

and let H = {O

H} € My m (C). There exists an upper Toeplitz Ty € My, (C) such that
1

T = [1(;1] € My.m (C) and B, T+ H = 0. Conversely, let Ty € M,, (C) be upper Toeplitz

and let T = ﬁ;l] € Mym (C). There exists a lower Hankel Hy € M,, (C) such that
H = LE?J € M, m (C) and B, T+ H = 0.

Let (ny,...,nx) € N¥ be given, and let n = Zle n;. Let Ai,...,A\x € C be given, and
let J=J,, (M) @@ Jpn, (Ak). Suppose that

JX = XJ. (2)

Write X = [X,] conformal to J. Then, J,, (As) Xst = XstJn, (At).  If As # ¢, then
Xt = 0. If Ay = X, then we have J,_ (0) X5 = Xt Jn, (0). (1) If ng = ng, then

X =Ty (ﬁ) for some @ € C™; (ii) if ng > my, then X = {T] for some upper Toeplitz

0
T € M,, (C); and (iii) if n, < ng, then Xy, = [0 T for some upper Toeplitz T € M, (C).

Definition 5. Let a = (n4,...,n;) € N¥ and n = Zle ni. Let 1 < s,t <k be integers, let
Hg € My, n, (C) be given, and let H = [Hy] € M, (C). Then H is said to be a—blockwise
upper Toeplitz if for every s and t, there exists an upper Toeplitz Ty € My (C) with p =
min{ns,n:} such that Hs has one of the following forms:

1. Tet ans =Ny

2. [Tst] if ng > ny
0

3. [0 Tst] if ms < ng.

The set of a—blockwise upper Toeplitz matrices is a subspace of M, (C). We are
interested in two particular types of Jordan blocks: (i) for a given A € R,

Li(A) =Jny (V)@ @ Jn, (N) 3)
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with nq > --- > n,, and (ii) for 8 € C\ R,

Ly (8) = (Jiy (B) ® Ji, (B)) &+ & (J, (B) ® T, (B)) (4)

with k3 > --- > k;. In equation (2), suppose that Ay =--- = X;. Then X is a solution to
equation (2) if and only if X is a—blockwise upper Toeplitz. Suppose that J has the form
of Ly (B) in equation (4), and let o = (k1, k1, ..., kg, kg). Then X = [X] (conformal to J)
is a solution to equation (2), if and only if X is a—blockwise upper Toeplitz and Xg = 0
whenever s + ¢ is odd.

For a = (ny,...,n;) € N¥, we assume that ny > -+ > ng.

We look at solutions to the equation

JY =Y. (5)

Write ¥ = [V] conformal to J. Then, we have (Jn, (As))" Yar = Yardn, (Ae). If A # A,
then Yy = 0. If Ay = X, then JL (0)Yy = YyJn, (0). Set Z = B, Yy. Then,
we have Z.J,, (0) = B, YiJ,, (0) = anJES (0)Yst = Jn, (0) B, Yt = Jp, (0) Z so that
ZJn, (0) = J,. (0) Z. Hence, (i) if ny = ny, then Yy, = Hy (@) for some @ € C"; (ii) if
I(} for some lower Hankel H € M, (C); and (iii) if ns, < ny, then
Yy, = [0 H] for some lower Hankel H € M,, (C).

ns > ng, then Yy =

Definition 6. Let a = (n4,...,n;) € N¥ and n = Zle n;. Let 1 < s,t < k be integers, let
Hy € My, n, (C) be given, and let H = [Hy| € M, (C). Then H is said to be a—blockwise
lower Hankel if for every s and t, there ezists a lower Hankel G5, € M, (C) with p =
min{ns,n:} such that Hs has one of the following forms:

1. Gst ans = Ny

0| .
2. [st if ng > ny
3. [0 Gst] Zf Ng < Ny.

A solution to equation (5) is a—blockwise lower Hankel. The set of a—blockwise lower
Hankel matrices is a subspace of M, (C).

Suppose that J = Ls (8) in equation (4). Let a = (k1,k1,...,kp, kp). If Y satisfies
equation (5), then Y is a—blockwise lower Hankel. Moreover, if Y = [V] is conformal to
J, then Yy; = 0 whenever s + t is even.

Definition 7. Let H = [Hg) € M, (C) be given. We say that H is checkered if Hgy = 0
whenever s +t is even, that is, whenever s and t are both odd or both even.

2 Apy—Symmetric Matrices

Let H € H, be given. Let A € M,, (C) be Ag— symmetric, so that H 'A*H = A. Then
A is similar to a real matrix. There exist a nonsingular S € M, (C), scalars Ay, ..., A\ € R
and S, ..., Bt € C\R; Jordan matrices Jy; (A;) that have the form L; ();) in equation (3) for
i=1,...,k, Jordan matrices Jo; (8;) that have the form Ly (8;) in equation (4) for j =1, ..., ¢
such that Kl = Jll (Al) D---D Jlk (Ak), K2 = J21 (Bl) D---D Jgt (50, J = K1 D K27 and
A = 575" is the Jordan Canonical Form of A.
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Let C = S*HS, so that C' € H,,. Then, J*C = CJ, so that C = C; & Cs with C;
having the same size as K; for ¢ = 1,2. Moreover, C; = C11 @ - -+ @ C1, with C; having
the same size as Jq; (A;) for each i = 1,...,k. We also have Cy = Ca1 & - - - @ Oy, with Cy;
having the same size as Jo; (f;) for each j = 1,...,t. 'We show that for each ¢ = 1,..., k,
there exist a diagonal Dy; having the same block sizes as Ji; (A;) and a nonsingular V; that
commutes with Jy; (A\;) such that Cy; = V;*Dy;V;. We also show that for each j = 1,...,,
there exist a diagonal Ds; having the same block sizes as Jo; (8;) and a nonsingular W;
such that Ca; = W} Dy;W;.  Notice that W; does not commute with .Ja; (8;), otherwise,
Dy; is checkered and is 0.

Let a1y = (a1, ..., Nap) and let ag; = (nj1,n41,...,Mjq,Mjq). For each i and j, we have
that Cj; is Hermitian, nonsingular, and «;;—blockwise lower Hankel. We look at a single
block nonsingular lower Hankel matrix.

Let @ =[a1--- an)’ € C". Let 2 < k < n be an integer and let A, = I + apJE=1(0).
Notice that Ay commutes with Ty (@). Equation (1) guarantees that AT B, = B, Ay.
Since Hy, (@) = B, Ty (@), we have

Hy, (?) = AT Hr (@) Ay = Hi (@) (I + 203 J571(0) + aZ JZ72(0)) (6)

Hence b; = a1 and by = ap + 2apa;. Suppose that a; # 0. If ay # 0, then take
k = 2 and choose as = —=22 so that by = 0. If b3 # 0, then take £ = 3 and consider

2(11

Hr (7) = ATH, (?) As. Choose a3z = 721’731 so that ¢c3 = ¢co = 0. Notice that AsAg

is nonsingular and upper Toeplitz. Continuing in this manner, there exists a nonsingular
upper Toeplitz P € M, (C) such that PTHp, (E)) P =aB,. If deR" then each ay is
real, and P is also real.

Lemma 8. Let @ = [ay - an]T € C™ be given with ay # 0. There exists a nonsingular
upper Toeplitz P € M, (C) such that PTHp, (7)P = aB,. If @ € R", then P may be
chosen to be real.

We look at the blocks Cy;.  Suppose that J = Lj (A) as in equation (3). Let a =
(ny,...,ng), let n = Zle n;, and let 6 = (ng,...,n;). Suppose that H = [Hy] € H,
(conformal to J) satisfies J*H = HJ so that H is a—blockwise lower Hankel.  Notice
that each Hj;; is lower Hankel and Hermitian, so that each H;; is also real. Write H =

My M, , with My, = Hy1. Then Mss is Hermitian and d—blockwise lower Hankel.
M1 Moo

If Hij has the same size as Hyj, then adding a multiple of column k to column j (and
putting it in column j) results in a matrix that is still a«—blockwise lower Hankel. This is
the same as multiplying H by P = [Py] on the right, where Py, = I,,, Py; = al,,, and the
other Py are 0. Similarly, if H;; has the same size as Hy, then adding a multiple of row j
to row k (and putting it in row k) results in a matrix that is still a—blockwise lower Hankel.
This is the same as multiplying H by @ = [Q«] on the left, where Qg5 = I,,, Q;j = aly,,
and the other Q4 are 0. Both P and () commute with J.

- —
Let 7 = [h1--ho,]T € R™ and let Hyy = Hy, (h) We show that without loss of

generality, we may assume that Hi; is nonsingular.
If hy # 0, then Hy; is nonsingular. Suppose that hy = 0. There exist a k € {2,...,n}

such that ny =np = - =ng, & b = [by -+ by, |7 € C™ with by # 0, and Hyy = Hy, (7);

otherwise, the first row of H is 0 and H is singular. Let ¢ = [CRER cnl]T € R™ be
given and let Hy, = Hy, (?) Let P, = [Py] € M, (C) be such that Pz = I,,, for all s,
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Pi1 = al,,, and the other blocks are 0. Then P, commutes with J and PfHP, € H,, is
a—blockwise lower Hankel. The (1,1) block of Py HP is G; = Hyy —&—aHlk—i—Eka—i—\aF Hyy,.
Let d = [dy---dy,]” € R™ and let Gy = Hy(d). Then, dy = aby + aby + |af2c;. 1
¢1 = 0, then choose a = by, otherwise, choose a so that Re(aby) (the real part of ab;) has
the same sign as ¢;. Hence, G; may be assumed to be nonsingular.

Let H = [Hy] € H, be a—blockwise lower Hankel and suppose that Hj; is nonsin-
gular. Lemma 8 guarantees that there exists a nonsingular upper Toeplitz T € M, (R)
such that T*H11T = hi1By,. Set Po = T & I,,_,,. Then P, commutes with J and

« hB,, G . -
PfHP, = [ 1G ! Gj where Gy = [(T*Hi2) -+ (T*Hy)| and Gz = [Hsi1)e41))
4
for s,t € {1,...,k—1} is é—blockwise lower Hankel. = We systematically reduce the
block components of G4. Because T™ is lower Toeplitz, Lemma 3 ensures that for each

i = 2,...k, we have T*Hy; = [1?,}, where F; € M, (C) is lower Hankel. Lemma 4
K2

guarantees that there exists Tp € M, », such that Tp = [%2} with So € M,, (C) an

upper Toeplitz, and hi1B,,To + T*Hi3 = 0. Set No = [T 0 --- 0] € My, n—p, and

set Q2 _ |:181 N2

}. Then Q> is a—blockwise upper Toeplitz and commutes with

hanl G5

ITL*TLl

J. M 2Py HP)Q =
oreover, Q3(P5HP,)Q: { Gi  Gs
Cl 02

and Gg = [ crC }, with C; = —T3T*Hys + H{5TTs + Hao (a lower Hankel), Cy =
2 3

[(Hgg +T5T*Hyz) -+ (Hop + TQ*T*HUC)], and C3 = [H(s+2)(t+2)] for s,t € {1, k= 2}.
One checks that Gg is a §—blockwise lower Hankel. We apply a similar process to zero-out
the entries of G5 while maintaining that Gg is a d—blockwise lower Hankel matrix. At each
step, the matrix we use in the reduction commutes with J.

Conversely, suppose that there exists a nonsingular P € M, (C) such that JP = PJ
and P*HP = zB,,, ® G, with x real and G € H,,_,, is 6—blockwise lower Hankel. Then
H € H, and P*HP is a—blockwise lower Hankel so that J*P*HP = P*HPJ, that is,
J*H = HJ. Hence, H is a—blockwise lower Hankel.

], where Gs = [0 (T*Hyg) --- (T*Hyy)]

Lemma 9. Let A € R and a = (ny,...,n;) € N¥ be given. Set J = J,, N @ - @ Jp, (N)
, setn = Zle n;, and set § = (na,...,ng). Then H € H,, is a—blockwise lower Hankel if

and only if there exist a nonsingular P € M, (C), a nonzero z € R and a d—blockwise lower
Hankel G € Hp—n, such that JP = PJ and P*HP = zB,, ®G.

If z > 0, then we may choose P such that JP = PJ and P*HP = B,,, ®G. If z <0,
then we may choose P such that JP = PJ and P*HP = —B,, & G.
A repeated application of Lemma 9 shows the following.

Theorem 10. Let A € R and a = (ny,...,ny) € NF be given. Set J = J,, (A\)@- - ®Jy,, ()
and set n = Zle n;. Then H € H,, is a—blockwise lower Hankel if and only if there exist
a nonsingular P € M, (C) and nonzero x1,...x;, € R such that JP = PJ and P*HP =
xle D---D J,‘ank.

We now look at the blocks Cs;. Suppose that J = Ly () as in equation (4). Let
a = (ki,k1,...,kp,kp), let n = 23"  k;, and let 6 = (ka2,ko,....,kp,kp). Suppose that
H = [Hs) € Hy (conformal to J) satisfies J*H = HJ so that H is a—blockwise lower
Hankel and checkered.
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%
We follow the discussion after Lemma 8. Let h = [hy--- hkl]T € Ck and let Hyp =
_)
Hr, ( h ) First, we show that it is without loss of generality to assume that Hi5 is nonsin-

gular. If Hys is singular and if k; > ko, then H is singular. Hence, there exists an integer
t such that k; = --- = k; and H; 2 is nonsingular. Let @) be the matrix such that HQ
adds column 2¢ of H to column 2 (and places it in column 2). Then G = Q*HQ = [G4] is
a—Dblockwise lower Hankel, Hermitian, and is checkered. Moreover G15 is nonsingular.

0 Hip
Hyy 0O
Lemma 8 guarantees that there exists an upper Toeplitz P € My, (C) such that PTHyo P =
h1By,. Set Pi = P @ P and notice that Py HyP; = hTOBk hlgkl Set P, =
P, @ I,_2k,. Then P, commutes with J and G = PyHP, = [G4] is a—blockwise lower
Hankel, is Hermitian, and is checkered. Moreover, G12 = h1 By, .

We now use G15 to systematically zero out the first row of G. Next, we systematicaly
zero out the second row using Go1 = G75. Suppose that @i is the matrix that does the
job. Then @; commutes with J and Q7GQ; is a—blockwise lower Hankel, is Hermitian,
is checkered, and the first two rows are zero except for GGio and Go;. Hence, the first
and second columns of G except for G2 and Gaihave also been zeroed out, that is,
QiGQr = PfHy Py & As, with Ay a—blockwise lower Hankel, Hermitian, and checkered.

Conversely, suppose that there exist a nonsingular P € M, (C), a nonzero z € C, and

0 zB,,
TBy, 0 ’
JP=PJ and PPHP = Hi ®G. Then H € H,, and P*HP is a—blockwise lower Hankel
and checkered so that J*P*HP = P*HPJ, that is, J*H = HJ. Hence, H is d—blockwise
lower Hankel and checkered.

Suppose that Hjps is nonsingular so that Hs = { ] is also nonsingular.

a d—blockwise lower Hankel and checkered G € H,,_2,, such that H; =

Lemma 11. Let 3 € C~ R and o = (ny,nq,...,n5,n,) € N?* be given. Set J =
(Jny (B) @ Ty (B)) @B+ @ (s, (B) @ iy, (B)), setn =2 Zle n;, and set § = (ng, N, ..., Nk, Ng) -
Then H € H,, is a—blockwise lower Hankel and checkered if and only if there exist a non-
singular P € M, (C), a nonzero x € C, and a d—blockwise lower Hankel and checkered

G € Hp—opn, such that Hy = [ 559 x%m }, JP=PJ, and PPHP = H ®G.
nq

A repeated application of Lemma 11 shows the following.

Theorem 12. Let 3 € C~ R and a = (ny,nq,...,np,ni) € N2* be given. Set J =
(Jny (B) @ Ty (B)) @+ & (Jny (B) ® Ty, (B)) and set n = 22?21 n;. Then H € H, is
a—blockwise lower Hankel and checkered if and only if there exist a nonsingular P € M, (C)
and nonzero x1i,...,xx € C such that for each i =1, ...,k we have H; = [ Tg 9311037” },
JP=PJ, and P"HP = H, @ --- & H,. '

We now use Theorems 10 and 12 to show the following.

Corollary 13. Let H € H,, be given. Let A € M, (C) be given. Then A is Ag—symmetric
if and only if there exist A1, ..., \x € R, B1,..., 8 € C\R, nonsingular P € M, (C), nonzero
1, ...,Tk € R, and nonzero yi,...,y; € C such that

1 Ky =Jn, (M)®--- @, (A&), forj =1,...,t, we have Jo j (B;) = Jm, (B;) © Jm, (E),
Ko=J21(B1)® - ®Jay (Be), J = Ki B K>, and P~ YAP = J is the Jordan Canonical
Form of A, and
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2. Hh =x1Bp, ©-- - ®xp By, for each j =1,...,t we have Hy ; = [
HQ :H2,1@"'@H2,t7 andP*HP:Hl@HQ

0 YiBm,;
Ui B, 0 '

_ 0 CLBn . . _ 1 %In %In
Let a € C be nonzero. Then C' = [aBn 0 } is nonsingular. Set @ = 7 { A S

) al, 1 . B, 0
Then, @ 1:\}5[(1[: ;n} Moreover, D = Q*CQ = 0" B,

Corollary 13 is #congruent to (B, ® —Bm,) ® -+ @ (Bm, ® —Bm, ).

}. Hence, Hs in

Corollary 14. Let H € H,, be given. Let A € M,, (C) be Ag—symmetric. Let \,...,\; €
R and By, ..., Bt € C\R be given. Suppose that K1 = J,, (A)®- - -®Jyn, (Ax) and that for j =
L,...,t, we have Jo j (B;) = Jm; (Bj) ® Jm; (Bj) and Ko = Jo1 (f1)®---BJ2, (Br). Suppose
that J = K1 & Ka, that S € M, (C) is nonsingular, and that A = SJS™! is the Jordan
Canonical Form of A. There exist a nonsingular Q@ € M, (C) and nonzero x1,...,xx € R
such that Hy = x1Bp, ® -+ ® 1By, Hy = (Byp, @ —Bm,) ® -+ ® (B, ® —Bp,) and
Q*HQ = H, ® H».

2.1 Inertia of H

Let H € H, be given. Suppose that A € M, (C) is Ag—symmetric. Let G4 =
{He H,, : Ais Ay — symmetric}, and let G € G4 be given. Corollaries 13 and 14 al-
low for an easy calculation of the inertia of G. Let A € R be nonzero. Then the inertia
of AB,, depends only on the parity of n and on the sign of A. If n = 2k is even, then
i (ABy) = (k, k,0), no matter the sign of A. If n =2k + 1 is odd and if A is positive, then
i (AB,) = (k+1,k,0). If n=2k+1isodd and if A is negative, then i (AB,,) = (k,k + 1,0).
Let @ € C be nonzero. Then the inertia of [agn aﬁn
Let z be the number of Jordan blocks of A corresponding to a real eigenvalue and of
odd size. If z = 0, then there is a positive integer k such that n = 2k so that for every
G € G4, we have i (G) =i (H) = (k,k,0). Suppose z > 0. Let G € G4 be given and let
P € M, (C) be such that P*GP = G; ® G2 is as in Corollary 13. Choose G; so that z; > 0
whenever n; is odd. If i (G) = (p,q,0), then we have p — ¢ = z and p + ¢ = n. The other
possible inertias can be achieved by changing the sign of one or more z;. If k such x; were
changed, then the new inertia (p1,q1,0) satisfies p1 — q1 = z — 2k. Here, k=0, ..., 2.

is (n,n,0).

Theorem 15. Let H € H,, be given and let A € M, (C) be Ay—symmetric. Let z be the
number of Jordan blocks of A corresponding to a real eigenvalue and of odd size. There
exists G € Ga with inertia (p,q,0), where p—q =z and p+q = n. If F € Ga, then
the possible inertia of F is i (F) = (p1,q1,0), where py + ¢1 = n and p1 — q1 = z — 2k
with k = 0,...,z.  Moreover, if (p1,q1,0) satisfies p1 + ¢ = n and p1 — ¢ = z — 2k with
k=0,...,z, then there exists F' € G4 such that i (F') = (p1,¢1,0).

Let A € M, (C) be Ag—symmetric. Then G € G4 if and only if —G € Ga4. Hence
there exists G € G4 such that i (G) = (p, ¢,0) if and only if there exists F' € G4 such that
1(F) = (q,p,0). Hence, when we find all the possible inertia of G € G4, we need only find
those (p, ¢,0) for which p > q.

Suppose that n = 2. The possible Jordan blocks of A are (i) a @@ for some a € C \ R,
(ii) b @ ¢ for some b,c € R, and (iii) J3 (d) for some d € R. In cases (i) and (iii), we have
i1(G) = (1,1,0) for every G € G4. In case (ii) we have p = 2, ¢ = 0, and z = 2, so that
p1 —q1 =2 or 0. Hence, if G € G4, then the possible inertia of G is (2,0,0) or (1,1,0).
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Suppose that n = 6. The following two tables give the possible inertia of G € G4, given
the Jordan Canonical Form of A. Here, we have A1,..., s € R and pq, o, u3 € C\R.
Let z be the number of Jordan blocks of A corresponding to a real eigenvalue and having
an odd size, and let i (G) = (p,¢,0). Then, we have p+ ¢ =n and p — ¢ = z — 2k, where k
is an integer less than or equal to 2z. The first table shows the possible Jordan blocks of

2
A when the largest Jordan block corresponding to a real eigenvalue has size 6, 5, or 4.

Jordan Canonical Form of A Possible i(G)
JG()‘I) (37 3, 0)
J5()‘1) 69*]1(/\2) (472’0)a (3’370)
Ji(A1) & J2(A2) (3,3,0)
J4()‘1) EBJl(A?)@Jl(A?)) (47270)ﬂ (37370)
Ji(M) @ Ji(m) @ J1(m1) (3,3,0)

The following table shows the other possible Jordan Canonical Forms for A.

Jordan Canonical Form of A Possible i(G)
JS()‘I) S J3</\2) (47 2, 0)7 (37370)
JB(,Ul) D J3(m) (37370)
‘]3(/\1) ® ‘]2()‘2) D Jl(/\?)) (47 2, 0)7 (37 3, 0)
Js(A) @ 1 (Ae) @ 1 (As) © Jy (Ag) (5,1,0), (4,2,0), (3,3,0)
JS()\l)@Jl()Q)@Jl(ﬂl)@Jl(m) (47270)7 (37370)
T00) @ Ja0w) @ Ja0vs) (3.3,0)
J2(A1) @ Ja(p1) @ J2(n) (3,3,0)
J2(A1) @ J2(A2) @ J1(A3) @ J1(Aa) (4,2,0), (3,3,0)
J2 (A1) @ J2(A2) @ Ji(pa) @ Ja () (3,3,0)
Jo(p1) @ Jo (i) @ J1(A1) © Ji(N2) (4,2,0), (3,3,0)
Jo(p1) & J2(pn) ® Ji(pz2) @ J1(m2) (3,3,0)

Joa(A1) @ J1(A2) ® J1(A3) @ J1(Ag) @ J1(Xs) (5,1,0), (4,2,0), (3,3,0)

J2(A1) @ J1(A2) @ J1(A3) @ Ji(pa) @ J1(fim) (4,2,0), (3,3,0)

J2 (A1) ® J1(p1) @ S (p1) @ J1(p2) © J1 (i) (3.3,0)
Jl(/\1>®J1(>‘2)€BJ1(/\3>®J1(A4)€BJ1()‘5>®J1(>‘6) (6a0a0)7 (571’0)7 (47270)’ (3a370)
J1 (M) @ J1(A2) @ Ji(As) ® J1(Aa) @ Ji(pa) @ J1 (i) (5,1,0), (4,2,0), (3,3,0)
Ji (M) © Ji(A2) @ Ji(pa) @ Ji(fin) @ Ji(pe) ® J1(k2) (4,2,0), (3,3,0)
Ji(p1) @ () @ Ji(p2) ® Ji(fz) © Ji(ps) © J1(fr3) (3,3,0)
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