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Abstract

The main contribution of this paper is the relationship between quantum moment
maps and states in deformation quantization. This allows for a Poincare-Birkhoff-Witt
Theorem to be stated and proved in deformation quantization. Moreover, moment
maps allows for the construction of positive linear functionals and minimizing states
on universal enveloping algebras. Finally, a nice Cauchy-Schwarz inequality is also
stated and proved.

1 Introduction

This note, a contribution to physical theory, presents various aspects of moment mappings in
classical mechanics and quantum mechanics, the latter in the so-called deformation quanti-
zation setting. In Hamiltonian systems with symmetry, one obtains a symplectic reduction
theorem and a classification theorem for symplectic manifolds via coadjoint orbits. This
last result shows the deep connection between symplectic geometry and the representation
theory of Lie groups.

In deformation quantization, quantum moment maps are the the quantum analogues of
classical moment maps. Quantum moment maps are maps from U(g)[[λ]] into the space of
derivations of C∞(M)[[λ]], where g is the Lie algebra of a Lie group of symplectomorphisms
of M . By its very definition, quantum moment maps provide representations of g. Concrete
computations of quantum moment maps for Lie groups will show how representations of the
Lie groups are obtained. We will also give the quantum analogue of the Poincare-Birkhoff-
Witt theorem where the quantized universal algebra is realized as a space of differential
operators.

In quantum mechanics, a fundamental role is played by the Heisenberg uncertainty
principle. To state it in deformation theory requires a proper notion of states in associative
algebras. This has been done by Waldmann and coworkers [2] and we will briefly present
their construction here. Their theory is derived from the Gelfand theory of C∗-algebras.
The uncertainty principle is stated by Przanowski and coworkers [10], which we will also
briefly recall here. The case where the uncertainty principle is an equality will be presented
here. In this case, it is the quantum moment map and an invariant due to Hamachi [4] that
detects the equality. We will present a proof here of this result.
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2 Hamiltonian Mechanics

2.1 Symplectic manifolds

Let a particle move in 3-space R3 under the influence of a potential ∇V (q). Let L(qi, q̇i) =
m

2
||q̇||2 − V (q) be the Langrangian of this system. Then the Euler-Lagrange equation

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

will imply Newton’s equation of motion F = ma. Introducing the variable pi = mqi and
writing

H(q, p) =
||p||2

2m
+ V (q)

it is straightforward to verify that the Euler-Lagrange equation is equivalent to Hamilton’s

equations ṗi = {pi, H} = −∂H
∂qi

and q̇i = {qi, H} =
∂H

∂pi
. Now, one may arrive at more

general forms of Hamilton’s equations, even for infinite-dimensional systems, by exploiting
the underlying geometric picture whose methods and tools fall under what is known as
symplectic geometry. In the fairly simple situation under consideration, the basic objects
are the motion space or phase space of points (q1, · · · , qn, p1, · · · , pn) and the symplectic

form ω =
∑

dqi ∧ dpi. Then, for any observable f(q, p, t), its time evolution is given by

dft
dt

= −{H, ft} := −ω(XH , Xf ),

where {f, g} =
∑ ∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi
is called the Poisson bracket of f and g. Hamilton’s

equations now take the form ṗi = {pi, H} = −∂H
∂qi

and q̇i = {qi, H}. For f = H itself, we

get dH
dt = {H,H} = 0, also called the conservation of energy. One sees that the change in

point of view gives a few important results almost for free.

Definition 1. A differentiable manifold M with a nondegenerate closed 2-form ω is called
a symplectic manifold. The form ω provides a skew-symmetric bilinear form ωp : TpM ×
TpM −→ R on tangent spaces TpM for each p ∈M .

We immediately shift our focus, and instead of considering M as basic we consider the
set of ”observables” A = C∞(M) = {smooth functionsf : M → R} as basic.

Definition 2. A Poisson manifold is a differentiable manifold M for which there is a
bilinear form { , } : C∞(M)×C∞(M) −→ R on the space of smooth functions satisfying the
following conditions: derivation property {uv,w} = u{v, w} + {u,w}v and Jacobi identity
{{u, v}, w}+ {{v, w}, u}+ {{w, u}, v} = 0.

As an example, symplectic manifolds are Poisson manifolds, where {f, g} = ω(df ∧ dg).
Examples

1. V a vector space, V ∗, the dual of V . Then V ⊕ V ∗ with symplectic form ω,

ω((u1, v
∗
1), (u2, v

∗
2)) = v∗1(u2)− v∗2(u1).
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2. Q the configuration space of a mechanical space, M = T ∗Q (the phase space = space

of positions and velocities) with ω = d(p1 ∧ dq1 + · · ·+ pn ∧ dqn) =

n∑
i=1

dqi ∧ dpn.

3. g∗, the dual of the Lie algebra of a Lie group is a Poisson manifold. This will be
discussed in a subsequent section.

2.2 Hamiltonian systems with symmetry

Let G be a Lie group acting on a symplectic manifold (M,ω) by symplectic transformations,
i.e., g∗ω(x) = ω(g ·x) = ω(x),∀x ∈M,∀g ∈ G. Then this group action induces a Lie algebra
action g×A −→ A on A = C∞(M) given by

(X̃f)(x) =
d

dt
f(exp tX · x)|t=0.

The vector fields X̃ are called Hamiltonian in case i(X̃)ω = −df for some function f . We
write X̃ = X̃f for Hamiltonian vector fields. The fX̃ are called Hamiltonian functions. As
Lie algebra actions, these vector fields satisfy

f
[̃X,Y ]

= {fX̃ , fỸ }.

We could have defined such vector fields without the presence of group actions but we want
to come quickly to the following definition.

Definition 3. Let G act on M by symplectic transformations and call this action φ. The
moment map J of φ is the mapping J : M −→ g∗ into the dual of the Lie algebra g of
G, defined by J(x) = fX̃(x), where i(X̃)ω = −dfX . The quadruple (M,ω, φ, J) is called a

Hamiltonian G-space. Let us define a related mapping Ĵ :g −→ C∞(M), given by Ĵ(X) =
fX .

We then have the following canonical commutation relation in classical mechanics or the
so-called correspondence principle, Ĵ([X,Y ]) = {Ĵ(X), Ĵ(Y )}. Equivalently, < J(x), [X,Y ] >=
{Ĵ(X), Ĵ(Y )}.

As examples, if M = Rn and G = Rn acts on by translations then J is the linear

momentum given by < J(x), ε >= x · ε =
∑

xiε
i, x ∈ M, ε ∈ g ∼= Rn. On the other hand,

for M = R3 and G = SO(3) is the group of rotations of Euclidean 3-space about the origin,
then J is angular momentum, < J(x), ε >= x× ε( cross product inR3), x ∈ M, ε ∈ g ∼= R3.
The following results make clear the major role played by the moment map in mechanics
and geometry. Details can be found in the beautiful book by Kirillov [7].

Theorem (Fundamental Conservation Law). Let φ : G ×M be a symplectic action
on M with moment map J . Suppose H : M −→ R is invariant under the action: H(m) =
H(φ(m)). Then J is an integral for XH : this means that if ϕt is the flow of XH , then

J(ϕt(m)) = J(m).

That is, J is constant along the trajectory of XH . In the case of the R-action on M by
t 7→ ϕt (flow of some fixed vector field), then J = H and the conservation law is again the
law of conservation of energy.
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Theorem (Symplectic Reduction). Let J be a moment map and let λ ∈ g∗ be a regular
value of J . Then Mλ := J−1(λ)/Gλ is a symplectic manifold, called the reduced symplectic
manifold.

A classification result (Kostant-Kirillov-Souriau). Let M be a symplectic manifold
for which (G,M, φ, J) is a homogeneous Hamiltonian G−space. Then M is homeomorphic
to the inverse image (or a central covering of it) J−1(O), where O is an orbit of the coadjoint
action of G on g∗.

This last result is very important in representation theory of Lie groups and the beginning
of the circle of ideas leading to the Borel-Weil-Bott Theorem. The results above indicate
the power of the formalism provided by symplectic geometry and moment maps on Poisson
and symplectic manifolds.

3 Quantization

If Q is the configuration space (position space) of a mechanical system, then the cotangent
bundle T ∗Q is its phase space (motion space consisting of positions and momenta). Let

(q1, ..., qn, p1, ..., pn) be the coordinates on M and consider the Liouville 1-form θ =
∑

pidqi.

Then (M,ω) is a symplectic manifold, where ω = dθ =
∑

dpi ∧ dqi. In the Hamiltonian

formulation of classical mechanics, the elements of A = C∞(M) are the observables. The
evolution of an observable ft ∈ N is governed by the equation

dft
dt

= −{H, ft}.

For example Hamilton’s equations are given by ṗi = {pi, H} = −∂H
∂qi

and q̇i = {qi, H} =

∂H

∂pi
.

Quantum mechanics, on the other hand, assigns to a quantum mechanical system a
Hilbert space H, whose elements are called states, and a set of self-adjoint linear operators
A on H as the quantum observables. The time evolution of an observable At is governed by

dAt
dt

= i~[H,At],

where the right hand side is the commutator H ◦At−At ◦H of operators and ~ is Planck’s
constant.

Quantization, then, abstracts the similarity between the classical and quantum, and is
defined as a linear mapping from a space of classical observables to a space of quantum
observables

Q : A −→ Op(H),

satisfying the following conditions.

1. Q(1) = IdH

2. Q{f, g} = i
~ [Q(f),Q(g)]

3. Q acts on a certain subspace of observables irreducibly.
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An example is the Weyl quantization, one of the more important quantization schemes.
For functions a(q, p) of Schwartz class, it assigns the operator â : L2(Rn) −→ L2(Rn) given
by

(Au)(q) = (2πh)−n
∫
R2n

exp

(
i

h
p(q − q′)

)
a

(
q + q′

2
, p

)
u(q′)dq′dp.

The function a is called the symbol of the operator A. For instance, one gets the usual
operator representations of positions and momenta, q̂i = multiplication by qi and p̂i = ∂

∂qi
.

4 Deformation Quantization

4.1 Basic Definitions and Example

In the early 1970s, Bayen and coworkers [1] suggested that quantization be viewed as a
deformation of the algebra of classical observables and not as a radical change in the nature
of the observables.

Let (M,ω) be symplectic manifold. Write A = C∞(M) for the algebra of smooth
functions on M .

Definition 4. A deformation quantization of M is an associative algebra structure ∗λ on
the space of formal power series A[[λ]] depending on the formal parameter λ, and satisfies
the following properties:

1. f ∗λ g = f · g + higher order terms in λ

2. f ∗λ g − g ∗λ f = −iλ{f, g} + higher order terms in λ

3. f ∗λ 1 = f = 1 ∗λ f

4. for f, g ∈ A, f ∗λ g =

∞∑
r=0

λrCr(f, g), where each Cr is a bidifferential operator on A.

Remark 5. Item 1. means that the ∗λ-product is a deformation of the commutative point-
wise product of functions in A. By defining the Lie bracket

[a, b]∗λ =
1

2λ
(a ∗λ b− b ∗λ a),

Item 3. means that the ∗λ generates a deformation of the Poisson bracket { , } on A. Item
4. means that the ∗λ-product is local.

Example. The basic example is that of the symplectic manifold (R2n, ω =
∑
dpi ∧ dqi),

which has for its deformation quantization the algebra
(C∞(R2n)[[ih/2]], ∗M ) where,

u ∗M v = exp(
ih

2
ω−1∂ru ∂rv)

=
∑(

ih

2

)r
1

r!
ωi1j1 · · ·ωirjr ∂ru

∂xi1 ...∂xir
,

= u · v + terms of higher order in i~
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u, v ∈ C∞(R2n), (x1, ..., x2n) = (p1, ..., pn, q1, ..., qn), and

(ωij) =

(
0 In
−In 0

)
. The Lie bracket between u and v is

[u, v]∗M =
1

2i
sinh(

i~
2
ω−1∂ru ∂rv)

= {u, v}+ terms of higher order in (ih)2,

showing the deformation of the Poisson bracket.

It was discovered by Moyal [8] that the ∗-product on R2n above is intimately connected
with the Weyl quantization. Indeed, if a and b are two symbols with corresponding operators
A,B, respectively, then the symbol c that corresponds to the operator AB is

c(x) =
∑ 1

r!

(
− ih

2

)r
ωi1j1 · · ·ωirjr ∂ra

∂xi1 · · · ∂xir
∂rb

∂xj1 · · · ∂xjr
.

4.2 The Gutt ∗−product

We now introduce the Gutt ∗-product on the dual g∗ of a Lie algebra g. Let G be a finite-
dimensional Lie group whose Lie algebra is g. Let g∗ be the dual space to g. If X1, . . . , Xn

form a basis of g, whose commutation relations satisfy

[Xi, Xj ] =
∑
k

ckijXk,

then a Poisson bracket {·, ·} maybe defined on C∞(g∗). Let xi, . . . , xn be linear coordinates
of g∗. Below, we will choose the xi to be the functions satisfying xi(Xj) = δij . Then the
Poisson bracket of two functions f, g ∈ C∞(g∗) is defined as

{f, g} =
∑

xkc
k
ij

∂f

∂xi

∂g

∂xj
.

Consider now the universal enveloping algebra U(g). This is just the space of all linear
combinations of elements Xn1

i1
· · ·Xnk

ik
(Poincare-Birkhoff-Witt, see Section 5.3) where Xij ∈

g, k, ik ∈ N. Define a new bracket [·, ·]λ on g by [X,Y ]λ = λ[X,Y ] ([X,Y ] is old g-bracket).
On the algebra of formal power series U(g)[[λ]], [·, ·]λ defines a Lie algebra structure by linear
extension. Consider also the space S(g) ∼= U(g)/ ∼, where XiXj ∼ XjXi. The symmetrizer

map S : U(g) −→ S(g) given by S(Xi1 · · ·Xik) =
1

k!

∑
Xσ(i1) · · ·Xσ(ik), σ ∈ Sk provides

the Gutt ∗-product on Poly(g∗) ∼= S(g) : f ∗ g = σ(σ−1(f) ◦ σ−1(g)). One can show that
1

λ
(f ∗ g − g ∗ f) = {f, g}+O(λ2).

5 Quantum Moment Mappings

5.1 Basic Definitions
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In [11] P. Xu defined quantum moment mappings which are the quantum analogs, in defor-
mation quantization, of moment mappings in classical mechanics. Again, write A = C∞(M)
and let ∗ be a star product on A.

Let G be a Lie group of symplectic transformations on M such that φgu ∗ φgv = u ∗ v,
for all g ∈ G. Recall that X ∈ g induces a derivation X̃ of A, hence also of A[[λ]].

A quantum moment mapping : J∗ : U(gλ) −→ A[[λ]] is an associative algebra homomor-
phism satisfying

[J∗Z, u]∗ :=
1

λ
((J∗Z) ∗ u− u ∗ (J∗Z)) = λ

d

dt
u(exp(tZ))|t=0, u ∈ A,

where both sides are viewed as derivations of A[[λ]].

Theorem 6. A quantum moment mapping is a deformation of some classical moment
mapping. This means that, in the notations above, J∗(f) = J(f) +O(λ).

Quantum moment mappings give us an invariant of star-products.

Definition 7. Let G act on M transitively and by symplectic transformations. Let ∗ be a
G−invariant star-product on M and J∗ is a quantum moment mapping of ∗. Let Z denote
the center with respect to Gutt star-product of U(g)[[λ]]. Then

c∗(X) := J∗(X) = constant ∈ C[[λ]],∀X ∈ g.

This invariant is due to Hamachi and several examples can be found in [4].

5.2 Example

In the paper [9], a simple construction of quantum moment mappings were given and was
carried out in a couple of low-dimensional Lie groups to obtain unitary representations of
these Lie groups. It realizes, at least in the examples given there, the program of applying
deformation quantization to Lie group representations in an autonomous manner. To carry
out this program, we define a mapping

ad∗ : U(g) −→ Der(A[[λ]]),

into the space of derivations of A[[λ]] by

T 7→ ad∗fT , where ad∗fT (u) =
1

λ
(fT ∗ u− u ∗ fT ).

By linearly extending this to the universal enveloping algebra U(g)[[λ]], we obtain a repre-
sentation of the Gutt ∗-product in a space of derivations. Let X1, ..., Xn be basis elements
of the the Lie algebra g satisfying the commutation relations

[Xi, Xj ] =
∑
k

ckijXk,

which induces the Poisson tensor
∑

xkc
k
ij

∂

∂xi
∧ ∂

∂xj
. Then

J∗(Xi) =
∑
j,k

xi

(
cijk

∂

∂xj
− cikj

∂

∂xk

)
.
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This is a quantum moment map because it is the classical moment map J : g → C∞(M)
when restricted to g. In fact, the computation is very simple

[J∗(Xi), u]∗ =
1

2λ
(fXi ∗ u− u ∗ fXi) = {fX , u} =

d

dt
u(exp tXi)|t=0,

for which details the reader can supply easily. For X,Y ∈ g, one has ([J∗(X), J∗(Y )]∗ =
{fX , fY } = f[X,Y ] = J∗([X,Y ]), so that indeed one gets a representation of the Lie algebra g
in a space of derivations. In [9], one considers the Casimir element or else look at another set
of coordinates for the representation space to obtain irreducible subspaces. In both cases,
deformation quantization theory autonomously provides the irreducible representations.

5.3 A Poincare-Birkhoff-Witt Theorem

Let g be a Lie algebra and U(g) be its universal enveloping algebra. Then the identifica-
tion map ι : g −→ U(g) is an injection. The Poincare-Birkhoff-Witt Theorem [6] says, if
Xi, ..., Xn is a basis of g, then the set

1, ι(Xi1) · · · ι(Xin), n ∈ N,

forms a basis of the universal enveloping algebra. This allows one to look at U(g) as the
span of

1,
∂α1

∂xα1
i1

· · · ∂
αk

∂xαkik
, αj ∈ N,

where, again, the xj are the linear coordinates of g∗.
Now, because of the Hamachi invariant for quantum moment maps, one obtains a similar

result for the algebra U(g)[[λ]].

Theorem 8. ad∗ : U(g)[[λ]]/Z −→ Der(C∞(M)[[λ]]) is injective, so realizes the universal
enveloping algebra as a space of differential operators.

6 Uncertainty Inequalities in Deformed Algebras

6.1 Uncertainty Principle

In the 1930s, Heisenberg formulated his famous uncertainty principle [5], one of the most
important results in Quantum Mechanics, viz., ∆p∆q ≥ ~

2 , where ∆q is change in position
of a particle and ∆p is the change in momentum. Thus, measurement of one quantity to
a high degree of accuracy will entail a large error in the measurement of the conjugate
quantity. For the conjugate variables E and t (energy and time), the uncertainty relation
is ∆E∆t ≥ ~

2 . In quantum mechanics, where the phase space is a Hilbert space H and the
observables are self-adjoint operators A : H → H, the uncertainty principle takes the form

||Au|| ||Bu|| ≥ | < [A,B]u, u > |,

where the vectors u belong to the domain of the commutator.
Robertson and Heisenberg (see [10] and references therein) subsequently generalized

the inequality to any finite number of observables as follows: Let (cjk) be a nonnegative
definite Hermitian matrix. Writing cjk = ajk + ibjk, then det (ajk) ≥ det (bjk). It is this
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inequality that we will be concerned with in the next section. The idea of Pzranowski and
Turrubiates in [10] is to extract a nonnegative definite matrix from images of observables
under appropriate states. It turns out that these states have been already defined much as
in the theory of C∗-algebras by Bordemann and Waldmann in [2].

Mathematical formulations of the uncertainty principle are important in the areas of
Fourier series, signal and wavelet analysis. On the other hand, one test of the validity
of a quantum theory, say, deformation quantization, is an appropriate expression of the
uncertainty principle.

6.2 Positive Functionals and States

Recently, a quantum analog, in deformation quantization setting, of the classical Robertson-
Heisenberg uncertainty relation were formulated by Przanowski and Turrubiates. The fol-
lowing discussion is mostly taken from their paper [10], which the reader may consult for
the details.

The main ingredient is to define an appropriate concept of positive linear functionals and
states in associative algebras A of formal power series due to Bordemann and Waldmann.
In what follows K is the field R or C. K(λ) denotes the field of quotients of the polynomials
in K[λ]. If A is an associative algebra, A((λ)) will denote the algebra of formal Laurent
series

∞∑
n=−N

λrar

in λ. See [2] for a beautiful and more complete discussion.
Let A be a complex associative algebra with involution over a field K(i), where K is an

ordered field. A positive linear functional is a linear map

ρ : A −→ K(i),

satisfying

ρ(ff) ≥ 0, ∀f ∈ A.

If, moreover, ρ(1) = 1 , ρ is called a state.
For A = C∞(M)((λ)), it turns out that what we need in our formulation of Heisenberg

uncertainty inequalities is the field of formal Laurent series

C((λ)) = {
∞∑

r=−N
λrzr : zr ∈ C, N ∈ Z}

This is an ordered field under the following ordering. ω1 =
∑
λkzr ≥ ω2 =

∑
λrwr if and

only if min(suppω1) ≥ min(suppω2) where suppω = {r : zr 6= 0}.
Let ρ : C∞(M)((λ)) −→ C((λ)) be a state. Let f1, ..., fn ∈ C∞(M)((λ)) such that

fk = fk. Such f ’s are called observables. Define δfj := fj − ρ(fj), ϕ(f, g) := ρ(f ∗ g) and

put f :=
∑

vjδfj , vj ∈ C((λ)).

Then ϕ(f, f) =
∑

vjvkϕjk,where ϕjk := ϕ(δfj , δfk) and [ϕ] = (ϕjk) is an n x n her-

mitian nonnegative-definite matrix over C((λ)). Thus, the Heisenberg-Robertson inequality
holds:
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Writing φjk = ajk + ibjk, A = (ajk), B = (bjk), then detA ≥ detB.
In more detail detA ≥ detB translates to

det

(
1

2
ρ(δfj ∗ δfk + δfk ∗ δfj)

)
≥ det

(
~
2
ρ([fj , fk]∗)

)
.

In particular, for two observables f1 and f2,

∆f1∆f2 ≥
1

2

√
(~[f1, f2]∗)2 + [ρ(f1 ∗ f2 + f2 ∗ f1)− 2ρ(f1)ρ(f2)]2,

where (∆f)2 := ρ(f ∗ f)− ρ(f)2 is the variance.

Example
Let G = SO(3) be the real rotation group, g = so(3) its Lie algebra and g3 = so(3)∗

the dual of so(3). In representation theory of Lie groups, an important role is played by the
coadjoint action and the coadjoint orbits. For G, the orbits M are the spheres with integral
radii. These orbits are symplectic manifolds, so are all locally homeomorphic to R2 via the
map (p, q) 7→ r cos p sin q E∗ + r sin p sin q F ∗ + r cos q H∗.

Consider the state ω : C∞(M)((λ)) −→ C((λ)) of the form ω =
∑
λkωk, ωk ∈ C.

For the basis elements E,F,H of g satisfying the commutation relations [H,E] =
E, [H,F ] = −F, [E,F ] = 2H, we get canonical functions X1 = E∗, X2 = F ∗, X3 = H∗.
The uncertainty inequality for these functions is an equality and reduces to 0=0.

A state ρ : C∞(M)((λ)) −→ C((λ)) is called a minimizing state for the functions
X1, ..., Xn if

det

(
1

2
ρ(δXj ∗ δXk + δXk ∗ δXj)

)
= det

(
~
2
ρ([Xj , Xk]∗)

)
.

We have seen above an example of minimizing states on functions on coadjoint orbits.
We now state some results on the existence of states and minimizing states on Gutt

star-product U(gλ). These results simply puts together the concepts of state in associative
algebras, quantum moment mappings and Hamachi’s invariant.

Theorem 9. Let ρ : C∞(M)((λ)) −→ C((λ)) be a positive linear functional.

1. If J∗ : U(gλ) −→ C∞(M)((λ)) is a quantum moment mapping, then ρ◦J∗ : U(gλ) −→
C((λ)) is a a positive linear functional.

2. Let the restriction J∗|Z 6= 0. Then the center Z of U(gλ) consists of functions for
which ρ ◦ J∗ is a minimizing state.

3. Let J∗ be the moment map given by ad∗. Then for two observables J∗(X) = fX , J∗(Y ) =
fY , we have a form of the Cauchy-Schwarz inequality:

(ρ ◦ J∗(X))(ρ ◦ J∗(Y )) = ρ(fX)ρ(fY ) ≥ 2ρ({fX , fY }).

Proof: For the first assertion, just check ρ ◦ J∗(f ∗ f) ≥ 0 = ρ(J∗(f) ∗ J∗(f)) =
ρ(J∗(f)∗J∗(f)) ≥ 0. Since J∗ is constant on Z, we may normalize it and the second assertion
follows immediately from the first. The proof of the last assertion is a direct computation
as follows. From the inequality

det

(
1

2
ρ(δfj ∗ δfk + δfk ∗ δfj)

)
≥ det

(
~
2
ρ([fj , fk]∗)

)
, j, k = 1, 2,
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then

a11a22 − a12a21 =
1

4
ρ(f1)2ρ(f2)2,

while

b11b22 − b12b21 = 0− (
1

i
)2ρ({fX , fY })2.
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