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Abstract

In this paper, a modified approach in deriving Schlömilch-type formulas is employed
for certain family of Stirling-type pairs. Specifically, Schlömilch-type formulas for r-
Stirling and r-Whitney numbers of the first kind are established.
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ating function.

1 Introduction

The exact value of the Stirling numbers of both kinds can be obtained using their corre-
sponding explicit formula. The known explicit formula for the classical Stirling numbers of
the first kind is called the Schlömilch formula. The process of deriving this formula is quite
complicated compared to deriving the explicit formula for Stirling numbers of the second
kind. More precisely, the Schlömilch formula is given by

s(n, k) =

n−k∑
r=0

r∑
j=0

(−1)j+r
(
r

j

)(
n− 1 + r

n− k + r

)(
2n− k
n− k − r

)
(r − j)r−k+n

r!
. (1)
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In deriving this formula, one can use the fact that if CtnF := coefficient of tn in F (t) and
{f(t), g(t)} is a pair of inverse functions, then

Ctn(g(t))k =
k

n
Ctn

(
f(t)

t

)−n
,

and the following differentiation formula[
dn

dtn
(φ(t))−α

]
t=0

= α

(
n+ α

n

) n∑
j=1

(−1)j

α+ j

(
n

j

)[
dn

dtn
(φ(t))j

]
t=0

(see [6]). Throughout the paper, the parameters n and k are taken to be nonnegative
integers.

In 1992, L.C. Hsu [8] constructed a general rule in deriving Schlömilch-type formula
for the family of Stirling-type pair {A1(n, k), A2(n, k)} satisfying the following generating
functions

(f(t))k

k!
=

∞∑
n=0

A1(n, k)
tn

n!
(2)

(g(t))k

k!
=

∞∑
n=0

A2(n, k)
tn

n!
(3)

where f(t) and g(t) are inverse functions. The Schlomilch-type formula for A1(n, k) is given
by

A1(n, k) =

n−k∑
r=0

(−1)r
(
n− 1 + r

n− k + r

)(
2n− k
n− k − r

)
A2(n− k + r, r). (4)

For instance, the Whitney numbers of the first and second kind satisfy the following relations

1

k!

(
ln(mz + 1)

m

)k
=

∞∑
n=0

wm(n, k)
zn

n!

1

k!

(
emz − 1

m

)k
=

∞∑
n=0

Wm(n, k)
zn

n!

where

Wm(n, k) =
1

mkk!

k∑
j=0

(−1)j
(
k

j

)
(m(k − j))n. (5)

It follows immediately from (4) and (5) that

wm(n, k) =

n−k∑
h=0

h∑
j=0

(−1)h+jmn−k
(
h

j

)(
n+ h− 1

n− k + h

)(
2n− k
n− k − h

)
(h− j)n−k+h

h!
. (6)

However, there are known Stirling-type pairs that do not belong to the above family of
Stirling-type pairs. The Schlomilch-type formula for these pairs of Stirling-type numbers
cannot be derived using formula (4). In this paper, we use another approach to derive
Schlomilch-type formulas for these type of Stirling numbers.
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2 r-Stirling Numbers of the First Kind

In the 20th century, several mathematicians work on generalization and extension of the Stir-
ling numbers which are related to combinatorial, probabilistic and statistical applications.
Among them was A.Z. Broder [4] who defined a certain generalization of Stirling numbers by
means of some combinatorial interpretations in terms of permutations and partitions which
he called the r-Stirling numbers. Several properties have been established by Broder [4] for
the r-Stirling numbers parallel to those of the classical Stirling numbers. These include re-
currence relations, generating functions and convolution-type identities. However, there are
some properties parallel to those of the classical Stirling numbers that have not been done
yet. One of those is the Schlömilch-type formula for the r-Stirling numbers of the first kind.
By looking at the structures of the generating functions of this pair of r-Stirling numbers,
they do not satisfy (2) and (3). Hence, (4) cannot be used to derive Schlömilch-type formula
for the r-Stirling numbers of the first kind.

The r-Stirling numbers of the first kind, denoted by

[
n
m

]
r

are defined combinatorially

as the number of permutations of the set {1, ..., n} having m cycles such that the numbers
1, 2, 3, ..., r are in distinct cycles. The r-Stirling numbers of the first kind obey the triangular
recurrence relation: [

n
m

]
r

= (n− 1)

[
n− 1
m

]
r

+

[
n− 1
m− 1

]
r

where, [
n
m

]
r

=

{
0, n < r
δm,r n = r

and

δm,r =

{
0, r 6= m
1, r = m.

The following theorems in [4] are some of the properties of

[
n
m

]
r

.

Theorem 1. The r-Stirling numbers of the first kind satisfy[
n
m

]
r

=
1

r − 1

([
n

m− 1

]
r−1
−
[

n
m− 1

]
r

)
, n ≥ r > 1.

Theorem 2. The r-Stirling numbers of the first kind satisfy[
n

n−m

]
r

=
∑

r≤i1<i2<...<im<n

i1i2...im, n,m ≥ 0.

Theorem 3. The r-Stirling numbers of the first kind have the horizontal generating function∑
k

[
n
k

]
r

zk =

{
zr(z + r)(z + r + 1)...(z + n− 1), n ≥ r ≥ 0,

0 otherwise.

Theorem 4. The r-Stirling numbers of the first kind have the vertical exponential generating
function ∑

n

[
n+ r
k + r

]
r

zn

n!
=

{
1
k!

(
1

1−z

)r [
ln( 1

1−z )
]k
, k ≥ 0,

0 otherwise.
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Note that when r = 0, the generating function in Theorem 4 reduces to

∑
n

|s(n, k)|z
n

n!
=

1

k!

[
ln

(
1

1− z

)]k
,

where |s(n, k)| denotes the signless Stirling numbers of the first kind. This can further be
written as

∑
n

(−1)n−ks(n, k)
zn

n!
=

1

k!

[
ln

(
1

1− z

)]k
, (7)

∑
n

s(n, k)
(−z)n

n!
=

1

k!
[ln(1− z)]k . (8)

To derive the Schlömilch-type formula for

[
n
k

]
r

, we have to decompose first the gener-

ating function in Theorem 4 into product of two functions as follows

∑
n

[
n+ r
k + r

]
r

zn

n!
=

{(
1

1− z

)r}{
1

k!

[
ln

(
1

1− z

)]k}
.

The first function can be expressed as(
1

1− z

)r
= (1− z)−r

=
∑
n≥0

(
−r
n

)
zn

=

(
−r
0

)
(−z)0 +

∑
n>0

(
−r
n

)
zn.

By Newton’s Binomial Theorem, we get(
1

1− z

)r
= 1 +

∑
n>0

(−r)(−r − 1)...(−r − n+ 1)

n!
(−z)n

= 1 +
∑
n>0

(−1)n
(r)(r + 1)...(r + n− 1)

n!
(−1)nzn

= 1 +
∑
n>0

(r)(r + 1)...(r + n− 1)
zn

n!

and by the definition of a rising factorial,(
1

1− z

)r
= 1 +

∑
n>0

rn
zn

n!

=
∑
n≥0

rn
zn

n!
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where rn = r(r + 1)...(r + n− 1). The second function can be written as

1

k!

[
ln

(
1

1− z

)]k
=

1

k!

[
ln (1− z)−1

]k
=

1

k!
[(−1) ln (1− z)]k

=
1

k!
(−1)k

[
lnk (1− z)

]
= (−1)k

[
lnk (1− z)

k!

]
.

By (8), we have

1

k!

[
ln

(
1

1− z

)]k
= (−1)k

∑
n≥k

s(n, k)
(−z)n

n!

= (−1)k
∑
n≥k

s(n, k)
(−1)nzn

n!

=
∑
n≥k

(−1)n+ks(n, k)
zn

n!
.

Hence, using Cauchy’s Rule for the product of two power series, we have∑
n

[
n+ r
k + r

]
r

zn

n!
=

{(
1

1− z

)r}{
1

k!

[
ln

(
1

1− z

)]k}

=
∑
n≥0

{
n∑

m=k

rn−mzn−m

(n−m)!
(−1)m+k s(m, k)zm

m!

}

=
∑
n≥0

{
n∑

m=k

zn−m+m

(n−m)!m!
(−1)m+ks(m, k)rn−m

}

=
∑
n≥0

{
n∑

m=k

(−1)m+k

(n−m)!m!
s(m, k)rn−m

}
zn.

Comparing the coefficients of zn, we get[
n+ r
k + r

]
r

n!
=

n∑
m=k

(−1)m+k

(n−m)!m!
s(m, k)rn−m.

Equivalently, [
n+ r
k + r

]
r

= n!

n∑
m=k

(−1)m+k

(n−m)!m!
s(m, k)rn−m

=

n∑
m=k

n!(−1)m+k

(n−m)!m!
s(m, k)rn−m

=

n∑
m=k

(−1)m+k

(
n

m

)
s(m, k)rn−m.
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Using the Schlömilch formula in (1), we have the following theorem.

Theorem 5. The Schlömilch-type formula for r-Stirling numbers of the first kind is given
by

[
n+ r
k + r

]
r

=

n∑
m=k

m−k∑
h=0

h∑
j=0

(−1)m+k+h+j

(
n

m

)(
h

j

)(
m− 1 + h

m− k + h

)(
2m− k
m− k − h

)
(h− j)m−k+h

h!
rn−m.

Taking r = 0, rn−m =

{
1 n = m
0 n 6= m

. Hence, Theorem 5 reduces to

(−1)n+k
[
n
k

]
0

=

n−k∑
h=0

h∑
j=0

(−1)h+j
(
h

j

)(
n− 1 + h

n− k + h

)(
2n− k
n− k − h

)
(h− j)n−k+h

h!

s(n, k) =

n−k∑
h=0

h∑
j=0

(−1)h+j
(
h

j

)(
n− 1 + h

n− k + h

)(
2n− k
n− k − h

)
(h− j)n−k+h

h!

which is exactly the Schlömilch formula in (1).

3 r-Whitney Numbers of the First Kind

Recently, the paper [11] by I. Mezo introduced further generalization of r-Stirling numbers
and Whitney numbers [1, 2, 3] which is called r-Whitney numbers. The main objective of the
paper [11] is to obtain a new formula for Bernoulli polynomials which is expressed in terms of
r-Whitney numbers. Several subsequent studies on r-Whitney numbers came out including
the work of Cheon and Jung [5] and Merca [10]. However, we observe that Schlömilch-type
formula for r-Whitney numbers of the first kind has not been considered yet. In this paper,
we derive this formula using the same method in deriving the Schlömilch-type formula for
r-Stirling numbers of the first kind.

The r-Whitney numbers of the first kind, denoted by wm,r(n, k), are defined as the
coefficients of the expansion of the following relation:

(x+ r|m)n =
∑

(−r)n+kwm,r(n, k)xk,

where (x+ r|m)n is the generalized factorial of x with increment m which is given by

(x+ r|m)n =

n−1∏
i=0

(x+ r − im).

One of the properties established in [11] is the following vertical generating function

∞∑
n=k

wm,r(n, k)
xn

n!
= (1 +mx)

−r
m
lnk(1 +mx)

mkk!
. (9)

Now, note that this exponential generating function is expressed as product of two functions.
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The first function can be expressed as

(1 +mx)
−r
m =

∑
n≥0

(−r
m

n

)
mnxn

=
∑
n≥0

(−rm )n

n!
mnxn

=
∑
n≥0

(−r|m)n
xn

n!

and the second function can be written as

lnk(1 +mx)

mkk!
=

1

mk

∑
n≥k

s(n, k)
(mx)n

n!

=
1

mk

∑
n≥k

mns(n, k)
xn

n!
.

Hence, using Cauchy’s Rule for the product of two power series, we have

∞∑
n=k

wm,r(n, k)
xn

n!
= (1 +mx)

−r
m

lnk(1 +mx)

mkk!

=

∑
n≥0

(−r|m)n
xn

n!

 1

mk

∑
n≥k

mns(n, k)
xn

n!


=
∑
n≥0

(∑
i=0

(−r|m)n−i

(
n

i

)
mi−ks(i, k)

)
xn

n!
.

Thus, comparing the coefficients of xn

n! , we have

wm,r(n, k) =

n∑
i=k

(−r|m)n−i

(
n

i

)
mi−ks(i, k).

Using equation (1), we obtain the following theorem.

Theorem 6. The Schlömilch-type formula for r-Whitney numbers of the first kind is given
by

wm,r(n, k) =

n∑
i=k

i−k∑
h=0

h∑
j=0

(−1)h+j(−r|m)n−im
i−k
(
n

i

)(
h

j

)(
i+ h− 1

i− k + h

)(
2i− k
i− k − h

)
×

× (h− j)i−k+h

h!
.

Note that when r = 0,

(−r|m)n−i =

{
0, n 6= i
1, n = i.
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Hence, we obtain

wm(n, k) = wm,0(n, k) =

n−k∑
h=0

h∑
j=0

(−1)h+jmn−k
(
h

j

)(
n+ h− 1

n− k + h

)(
2n− k
n− k − h

)
(h− j)n−k+h

h!

the Schlömilch-type formula for Whitney numbers of the first kind.

4 Unified Generalization

The unified generalization of Stirling numbers, denoted by S(n, k;α, β, γ), was defined by
L.C. Hsu and P. J-S. Shuie [9] by means of the following relation

(t|α)n =

n∑
k=0

S(n, k;α, β, γ)(t− γ|β)k, (10)

where α, β, γ may be real or complex numbers. The unified generalization satisfies the
following explicit formula

S(n, k;α, β, γ) =
1

βkk!

k∑
j=0

(−1)k−j
(
k

j

)
(βj + γ|α)n

and exponential generating function

(1 + αz)γ/α

k!

(
(1 + αz)β/α − 1

β

)k
=

∞∑
n=0

S(n, k;α, β, γ)
zn

n!
(11)

(see [7, 9]). Clearly, the method established in (2), (3) and (4) to derive Schlömilch-type
formulas cannot be applied directly to obtain such formula for S(n, k;α, β, γ). However,
one can easily do it by applying the approach used in Sections 2 and 3. That is, one has to
define first a kind of generalization of Whitney numbers by means of the following generating
functions

1

k!

(
(1 + αz)β/α − 1

β

)k
=

∞∑
n=0

w(n, k;α, β)
zn

n!
(12)

1

k!

(
(1 + βz)α/β − 1

α

)k
=

∞∑
n=0

W (n, k;α, β)
zn

n!
(13)

and establish some necessary properties, particularly, the Schlömilch-type formula for
w(n, k;α, β). It can easily be verified that when β → 0,

(1 + αz)β/α − 1

β
→ ln(1 + αz)

α
and

(1 + βz)α/β − 1

α
→ eαz − 1

α
.

These facts imply that the generating functions for Whitney numbers of the first and sec-
ond kind can be deduced, respectively, from the generating functions in (12) and (13) by
letting β → 0. This confirms that the pair {wm(n, k;α, β),Wm(n, k;α, β)} is a kind of
generalization of the pair of Whitney numbers.
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We observe that the generating functions in (12) and (13) belong to the family of gen-
erating functions defined in (2) and (3). Hence, by making use of relation (4), we obtain

w(n, k;α, β) =

n−k∑
r=0

(−1)r
(
n− 1 + r

n− k + r

)(
2n− k
n− k − r

)
W (n− k + r, r;α, β)

where

W (n− k + r, r;α, β) = S(n− k + r, r;β, α, 0) =
1

αrr!

r∑
j=0

(−1)j
(
r

j

)
(α(r − j)|β)n−k+r.

It follows that, for α 6= 0,

w(n, k;α, β) =

n−k∑
r=0

r∑
j=0

(−1)r+j
(
r

j

)(
n− 1 + r

n− k + r

)(
2n− k
n− k − r

)
(α(r − j)|β)n−k+r

αrr!
. (14)

Furthermore, using the method in Section 2 and 3 with

(1 + αz)γ/α =

∞∑
n=0

(γ|α)n
zn

n!

1

k!

(
(1 + αz)β/α − 1

β

)k
=

∞∑
n=0

w(n, k;α, β)
zn

n!
,

we have
∞∑
n=0

S(n, k;α, β, γ)
zn

n!
=

( ∞∑
n=0

(γ|α)n
zn

n!

)( ∞∑
n=0

w(n, k;α, β)
zn

n!

)

=

∞∑
n=0

n∑
i=0

(γ|α)n−i
zn−i

(n− i)!
w(i, k;α, β)

zi

i!

=

∞∑
n=0

n∑
i=0

i−k∑
h=0

h∑
j=0

(−1)h+j
(
n

i

)(
h

j

)(
i− 1 + h

i− k + h

)(
2i− k
i− k − h

)
×

× (γ|α)n−i(α(h− j)|β)i−k+h
αhh!

zn

n!
.

Comparing coefficients completes the proof of the following theorem.

Theorem 7. For α 6= 0, the Schlömilch-type formula for the unified generalization of Stir-
ling numbers is given by

S(n, k;α, β, γ) =

n∑
i=0

i−k∑
h=0

h∑
j=0

(−1)h+j
(
n

i

)(
h

j

)(
i− 1 + h

i− k + h

)(
2i− k
i− k − h

)
×

× (γ|α)n−i(α(h− j)|β)i−k+h
αhh!

.

Note that, when α = m, β = 0 and γ = −r, Theorem 7 yields

S(n, k;m, 0,−r) =

n∑
i=k

i−k∑
h=0

h∑
j=0

(−1)h+j
(
n

i

)(
h

j

)(
i+ h− 1

i+ h− k

)(
2i− k
i− h− k

)
×

× (−r|m)n−i(m(h− j))i−k+h

mhh!
,
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which is exactly the Schlömilch-type formula for r-Whitney numbers of the first kind in
Theorem 6.
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