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Abstract

In metabolic engineering, biochemical pathways are studied in order to optimize
some desired end-products of the system. Mathematical models have been used to
model the pathways and optimization algorithms have been employed to optimize the
end-product of interest. A lot of work has been invested in studying single-objective
problems. There are some instances, however, when more than one by-product needs
to be optimized and in this case multiple objective programming must be employed. In
this study, we propose the use of interactive fuzzy programming with preference criteria
to solve the multi-objective problem arising from optimization in models of biochemical
networks. We choose the preference criteria method due to its interactive nature that
could incorporate the modeler’s inputs in choosing a compromise solution. Moreover,
as the ideas in preference criteria naturally lead to the definition of fuzzy membership
functions, we use fuzzy programming to obtain compromise solution. We describe
the method and its efficacy using an S-system model of xanthine monophosphate and
guanosine monophosphate production in purine metabolism.

Keywords: fuzzy programming, preference criteria, multi-objective optimization,
S-system, purine metabolism.

1 Introduction

Metabolic engineering is an interdisciplinary science that has developed as a result of ad-
vances in molecular biology and biochemistry, genetics, chemical engineering, biotechnology,
mathematical modeling, and systems analysis. One major goal is the optimization of some
desired metabolites that have useful industrial or pharmaceutical roles, where the engineered
metabolic pathways and/or gene networks are usually performed in micro-organisms. Specif-
ically, metabolic engineering aims to mathematically model these networks, calculate a yield
of useful metabolites, and determine which parts of the network constrain the production
of these metabolites [1]. Genetic engineering techniques can then be used to modify the

151



152 Cherryl O. Talaue and Ricardo C.H. del Rosario

network in order to relieve these constraints. Once again this modified network can be
modeled to calculate the new product yield. As a result, metabolic engineers are able to
manipulate and grow these microorganisms to produce valuable substances on an indus-
trial scale in a cost effective manner. Some examples include producing beer, wine, cheese,
pharmaceuticals, and other biotechnology products.

Since optimization of metabolic pathways are of great biotechnological importance, the
literature in this area is quite large. Some of the attempts to apply optimization criteria to
metabolic networks are found in [2, 3, 4, 5, 6]. However, the instrintic nonlinearities in most
metabolic systems has been a stumbling block in optimization, where results are usually
scarce and confined to a small number of variables. This is in contrast to the linear domain
in which a number of analytical and numerical methods are well established.

A natural bridge between the two domains is given by the Biochemical Systems Theory
(BST). S-systems which is a variant of BST are highly nonlinear and able to represent
all types of dynamic behavior. However, their steady state equations are linear in which
methods of linear programming can easily be used. The nonlinear dynamics together with
linear steady state characteristics of S-system models provides a true alternative to make
optimization problems in metabolic engineering easier to solve.

A number of papers have optimized S-systems models [7, 8, 9]. However, most results
are geared towards the optimization of a single by product or a single flux and very few
have considered the need to optimize more than one metabolite or flux, which may often be
case on real life problems. The multi-objective problem has been considered in [10] wherein
the authors have considered optimizing a certain flux together with several metabolites.
However, the MOP has not been extensively discussed.

In this research, we consider multi-objective optimization in S-systems. We propose to
solve the MOP using the interactive fuzzy programming with preference criteria technique
developed by Tapia and Murtagh [11]. We illustrate the use of the solution approach in the
simplified pathway of xanthine monophosphate and guanosine monophosphate production.

2 Optimization in S-systems

Computational metabolic engineering translates metabolic networks into mathematical mod-
els and optimizes end products of these models. The translation of metabolic pathways using
ordinary differential equations (ODEs) usually results in non linear systems. Biochemical
Systems Theory (BST) is a mathematical modeling framework in which the reactions rates
(fluxes) are represented using power law expansions in the variables of the system. One
variant of BST is the S-systems in which all reactions leading to a metabolite pool are
aggregated as one product of power functions and all reactions leaving the metabolite pool
are likewise aggregated as one product of power functions. S-system models have the form:

Ẋi = αi

n+m∏
j=1

X
gij
j − βj

n+m∏
j=1

X
hij

j , i = 1 · · ·n (1)

where Xi, i = 1, · · ·n denote the concentration of metabolite i while the αi’s and βi’s are
non- negative rate constants for the production and degradation terms respectively. The
gij ’s and hij ’s are kinetic orders which quantify the regulation effect of Xj on the produc-
tion or degradation of Xi. X1, X2, · · ·Xn are the dependent variables (e.g. metabolites)
while Xn+1, Xn+2, · · ·Xn+m are the independent variables which are controllable and have
constant values throughout the model (e.g. enzymes, effectors).
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A great advantage of S-systems is they can capture any differentiable nonlinearities [12]
but at the same time they have steady states that are characterized by systems of linear
equations upon logarithmic transformation (See Chapter 6 of [13] for a detailed discussion
on this). Hence, optimization in S-system models requiring operations at steady state
conditions is represented by a linear program which allows the use of a straightforward
simplex algorithm.

Sensitivity analysis of S-systems shows that changes in independent variables cause the
system to assume a new steady state. The new steady state is characterized by new
metabolic levels and flux levels. Hence, the aim in optimizing metabolic pathways is to
determine which enzyme activities should be altered and by what degree such that the new
steady state is optimal in some sense.

The optimization task with S-systems is as follows.

max
y∈Rn+m

f(y)

subject to
i) steady state equations (expressed in logarithms of variables)
ii) constanta ≤ ln(dependent or independent variable) ≤ constantb
iii) constantc ≤ ln(fluxi) ≤ constantd

iv) ln

(
fluxj

fluxk

)
<= constante

(2)

where f(y) is either a flux of the model or a dependent variable (in logarithmic form). The
constraints i) to iv) define a feasible decision subspace Y ⊆ Rn+m of the n+m-dimensional
real space [14, 7, 8, 9]. A linear program for metabolic networks in S-systems may contain
some or all of the constraints but it should always contain an objective function. Constraint
(i) ensures that the optimized system is in a steady state, no matter what the altered
independent variables are. In addition to the steady state constraints, the linear program
may include other components: constraint (ii) forces the variables to stay within certain
limits, constraint (iii) is the analogous constraint on the fluxes and constraint (iv) forces
the ratio of two fluxes fluxj and fluxk to remain below a certain limit.

Linear programming models are easily solved with readily available linear optimization
programs. These programs are usually well behaved and are able to deal with thousands of
variables and constraints.

3 MOMP in S-systems

Most optimization in S-systems deals with a single goal that is to maximize yield. However,
in many real life situations, a single goal may be unrealistic, and any optimal solution must
strike a balance among different goals. In this paper, we consider a situation wherein more
than one by product of the network should be optimized hence we consider an MOP.

An MOP with k objective functions in S-systems can be written as:
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max
y∈Rn+m

f(y) = [f1(y), f2(y), · · · , fk(y)]

subject to
i) steady state equations (expressed in logarithms of variables)
ii) constanta ≤ ln(dependent or independent variable) ≤ constantb
iii) constantc ≤ ln(fluxi) ≤ constantd

iv) ln

(
fluxj

fluxk

)
≤ constante

(3)

In comparison with (2), we now have k objective functions but with the same formulation
of the constraints. The objectives in (3) (and MOPs in general) are usually conflicting so
that not all objectives can simultaneously arrive at their optimal levels. Thus, instead of a
unique solution to the problem which is typically the case in the single-objective problem
(2), the solution to (3) is not unique and consists of a (possibly infinite) set of nondominated
solutions. We have the following definition of a non dominated solution.

Definition 1. A vector of decision variables, y∗ is a nondominated point if and only if there
does not exist y such that

fi(y) ≥ fi(y∗), i = 1, . . . k
fj(y) > fj(y

∗), for some j

The image of a nondominated point is a nondominated solution.

The main goal here is to reach a compromise solution among the set of nondominated
solutions.

A review of interactive techniques in solving MOPs is given in [15]. Tapia and Murtagh
propose the use of the preference criteria technique in [16]. Some researches have formulated
the MOP as fuzzy programming problem wherein the aspiration levels for the objectives are
given by fuzzy set membership functions [17, 18, 19, 20].

In this paper, we use the proposed approach of Tapia and Murtagh [11] which refor-
mulates the multi-objective decision problem as fuzzy programming problem but suggests
a convenient way of expressing aspiration levels as preference information known as pref-
erence criteria and percentages of achievement (which are concepts taken from [16]) of the
objectives as useful in providing decision making aids. The notions of preference criteria and
percentages of achievement are used to define fuzzy membership functions. These functions
express the degree of imprecision of the decision maker’s (DM) indicated (fuzzy) aspiration
levels for the objective relative to their actual levels of attainment. In our case, the DM can
be the modeler, experimentalist or the metabolic engineer.

4 The Use of Interactive Fuzzy Programming with Pref-
erence Criteria in Solving MOPs

During the interactive process of solving the MOP (3), the DM has the option to identify
a finite number of non-dominated solutions that satisfy a preference structure. We collect
these favoured solutions into a set denoted as

U = {f(y∗u), u = 1, 2 . . . r} ,
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where r ≥ k and k is the number of objective functions. The DM has the task of selecting
his best compromise solution from this set. This involves setting up k+ 1 selection criteria,
C(i), i = 1, 2 . . . k + 1. The first k criteria are of the form

C(i) : 0 ≤ pci − Ei ≤ pai ≤ 100, i = 1, 2, . . . , k ,

where 0 ≤ pci ≤ 100 is the ith preference criterion defined by the DM. This models the DM’s
desire to attain the optimal value of objective i in (3). A value of pci closer to 100 means
a higher preference to optimize fi, while a value closer to zero means a lower preference for
fi. While pai is the percentage of achievement of the ith objective function in (3) and is
given by:

pai =

[
1− fi(y

i∗)− fi(y)

fi(yi∗)− f−i

]
∗ 100% (4)

where yi∗ is the solution when we optimize only the ith objective function in (3) subject
to the same set of constraints. The value of pai signifies the closeness of the ith objective’s
computed value at y to the true minimum fi(y

i∗) over the range of values between f−i and
fi(y

i∗). Ei is the ith non-negative underachievement size that the DM is willing to accept
for the ith objective function.

The (k + 1)th criterion is given by

C(k + 1) : 0 ≤
k∑

i=1

(pagi − pai) ≤ Eg

where pagi is the global percentage of achievement for the ith objective function which can
be obtained from the optimal solution of the following mathematical program:

max

k∑
i=1

pai

subject to the same constraints as in (3) .

(5)

Eg is the maximum non-negative value difference accepted by the DM between the sum of
the global percentages of achievement and the sum of the actual percentages of achievement
of all the k objective functions.

The best compromise solution should meet the requirement that the k + 1 selection
criteria, C(j), j = 1, 2, . . . , k+ 1, be satisfied simultaneously. These selection criteria can be
regarded as expressions of the DMs’ aspiration level for the ith objective function. We want
to search for a best compromise solution in which the percentage of achievement, pai, of the
ith objective function is better or at least equal to the DM’s aspiration level expressed in
terms of the preference criterion, pci and Ei.

The best compromise solution is likewise expected to be a point at which the sum of
the actual percentages of achievement of the objective functions and the sum of the global
percentages of achievement which are optimal solutions of (5) differs only by at most a non-
negative magnitude, Eg. The global percentages of achievement represent a point in the
attainable objective space that is optimally situated with respect to the ideal point whose
coordinates are the optimum values of all the objectives.

From the k + 1 selection criteria, C(j), we now define the membership function of a
nondominated solution as

pai − pci + Ei

100− pci + Ei
. (6)
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Each nondominated solution can be considered to be a member of a fuzzy set whose
degree of membership can be calculated using (6), whose values range from 0 to 100. A
solution with a higher membership value is considered to be a strongly desirable solution.

The following fuzzy model is proposed to find a compromise solution with a high mem-
bership value as this would be the most satisficing solution to the DM.

maxZ
subject to for i = 1, 2 . . . k,

(i)
pai − pci + Ei

100− pci + Ei
≥ Z

(ii) 0 ≤ pci − Ei ≤ pai ≤ 100

(iii) 1−
k∑

i=1

(pagi − pai)
Eg

≥ Z

(iv) 0 ≤
k∑

i=1

(pagi − pai) ≤ Eg

(v) pai =

[
1− fi(y

i∗)− fi(y)

fi(yi∗)− f−i

]
∗ 100

(vi) f−i 6= fi(y
i∗)

(vii) f(y) = (f1, f2, . . . fk) ∈ F

(7)

where

fi(y
i∗) = max fi subject to the contraints of (3)
f−i = min

1≤j≤k

{
fi(y

j∗)
}

pci, i = 1, · · · k are input preference criteria
Ei, i = 1, · · · k and Eg are input underachievement sizes accepted by the DM
pagi i = 1, · · · k are the global percentages of achievement of the objective function

which are calculated from (5).
F is the attainable objective space corresponding to the

feasible region, Y , defined by the constraints of (3).

The fuzzy model (7) is intended to be used interactively and iteratively. For each objec-
tive function fi, the DM is first asked to input a preference criteria pci and underachievement
tolerance values Ei. The DM is likewise asked to input Eg, which is the maximum nonnega-
tive tolerance value which represents the difference between the sum of all global percentages
of achievement and the sum of all percentages of achievement acceptable to him. Model (7)
is then solved; if the problem is infeasible, the DM is asked for a new set of parameters.
Once a feasible solution is found, then the optimal value of Z as well as the correspond-
ing nondominated solution to MOP are presented to the DM. If the DM is satisfied with
the solution then the problem is considered solved otherwise he is asked for a new set of
inputs. The proposed algorithm for the solution of (3) using preference criteria in fuzzy
programming can be written symbolically as follows:
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Step 0. Formulate the fuzzy model (7) in relation to the MOP (3).

Step 1. Ask the DM to input pci, i = 1, 2 . . . k; Ei, i = 1, 2 . . . k; and Eg

Step 2. Solve (7). If it is infeasible then go to Step 1, otherwise present to the DM
the resulting value of Z and its corresponding nondominated solution for (3). If the
DM selects a preferred solution, STOP; if the DM is not satisfied, go to Step 1.

5 Optimization on a Model of Xanthine Monophosphate
and Guanosine Monophosphate Production

To illustrate the use of the proposed method, we consider the optimization problem on
the purine metabolic pathway involving xanthine monophosphate (XMP) and guanosine
monophosphate (GMP) as given in [14]. Many organisms have metabolic pathways that
synthesize and breakdown purines. The optimization problem in [14] is a single-objective
problem and we add some additional objective functions to extend the problem to a multi-
objective one. The single objective problem involves maximizing the yield of XMP and
GMP, which are flavor enhancing purine nucleotides and are used as food additives. As
shown in Figure 1, XMP and GMP are intermediates in the production of nucleic acids
from 5-phosphoriboribosyl-α-1-pyrophosphate (PPRP).

Figure 1: Simplified pathway of XMP and GMP synthesis taken from [14].
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In order to translate Figure 1 into a mathematical S-system form, we define the vari-
ables and reaction fluxes as follows. PPRP is represented as X1, inosine monophosphate
(IMP) is represented as X2, the adenylates and inosine are aggregated as X3 and XMP
and guanylates are aggregated as X4. The regulatory mechanisms that affect the system of
purine metabolism are accounted as illustrated in Figure 2. As seen also in Figure 2, the
central branchpoint of the purine metabolism is IMP and the production and the conver-
sions into other intermediates are strongly regulated by feedback inhibition. (As shown by
the negative signs beside the fluxes (arrows).)

Figure 2: Definition of variables for an S-system model of the pathway in Figure 1.

Since the S-system is a canonical method for translating biochemical networks to models,
the network in Figures 1 and 2 are formulated in a straightforward manner (see Chapter 3
of [13]). The S-system representation has 4 dependent and 6 independent variables and is
given by

Ẋ1 = 900X−0.53 X−0.54 X5 − 10X0.5
1 X−0.12 X−0.23 X−0.24 X6

Ẋ2 = 10X0.5
1 X−0.12 X0.1

3 X−0.54 X6X8X9 − 100X0.5
2 X−0.53 X−0.54 X7X10

Ẋ3 = 200X0.5
2 X−0.53 X7 − 10X0.1

1 X3X
−1
4 X8

Ẋ4 = 30X0.5
2 X−0.54 X10 − 100X−14 X4X9 .

(8)

The independent variables X5, X6, X7, X8, X9, X10 are all equal to 1 and all parameters
(rate constants and kinetic orders) are obtained from literature [14]. The system (8) has a
unique stable steady state given in column 1 of Table 1.

An application of the above model is to maximize the steady-state concentration of X4

(i.e., the concentration of GMP and XMP) by determining optimal values of the control or
independent variables. One constraint is that all metabolite pools must remain within a
certain range about their original concentrations and the processes in the network cannot
be changed to an arbitrary degree, which implies constraints on the control variables. It
is also required that the metabolite pools of PPRP (X1), IMP (X2), and the adenylates
(X3) must remain within 10% of their original concentrations. The independent variables



Multi-objective Optimization of Metabolic Pathways 159

are limited to values between 20% and five times their basal values. The linear program in
logarithmic coordinates for (8) has the following form:

max y4
subject to
0.5y1 − 0.1y2 + 0.3y3 + 0.3y4 − y5 + y6 = ln(90)
0.5y1 − 0.6y2 + 0.6y3 + y6 − y7 + y8 + y9 − y10 = ln(10)
0.1y1 − 0.5y2 + 1.5y3 − y4 − y7 + y8 = ln(20)
0.5y2 + y3 − 1.5y4 − y9 + y10 = ln

(
10
3

)
ln(4.9) ≤ y1 ≤ ln(6.0)
ln(192) ≤ y2 ≤ ln(234)
ln(2176) ≤ y3 ≤ ln(2660)
ln(0.2) ≤ y5, y6, y7, y8, y9, y10 ≤ ln(5)

(9)

where yi = ln(Xi) i = 1, · · · 10 .

We now extend the problem into a multi-objective form. To this end, we also optimize
the dependent variable X3 and the flux V2. Since the purpose of this paper is to illustrate
how the technique is applied, we give no attention to the biological significance of the two
additional objectives. Our MOP for (8) has the form

max
y

(f1(y), f2(y), f3(y))

subject to the same constraints in (9)

where
f1 = y4
f2 = 0.5y1 − 0.1y2 + 0.1y3 − 0.5y4 + y6 + y8 + y9
f3 = y3 .

(10)

We formulate a fuzzy model (7) in relation to the MOP model (10). We solve the
fuzzy model using AIMMS software [21]. The following parameter values obtained from the
single-function optimization computations for each objective function in (10) are used:

f1(y1∗) = 6.273 f−1 = 6.050
f2(y2∗) = 3.577 f−2 = −2.665
f3(y3∗) = 7.886 f−3 = 7.685

and (pag1 + pag2 + pag3) = 261.4, which is obtained from the solution in (5).

Now, to illustrate our proposed method, suppose the DM has the following input pref-
erences: pc1 = 80, pc2 = 60, pc3 = 60, E1 = 10, E2 = 5, E3 = 5 and Eg = 5. This means
that the DM favors objective 1 over the other 2 objectives. Column 2 of Table 1 gives us
the solution to (7) where Xi = exp(yi).

It can be observed that the optimized values are indeed improvements of the steady
state values, where the concentration of each metabolite and flux V2 all increased. To
obtain the above metabolite concentrations and flux value, all the enzymes should be altered
accordingly. The concentration of X5 should be increased from its steady state concentration
of 1 to 1.051 and the concentration of X6 should be decreased from 1 to .958. While the
concentrations of the other independent variables should be increased from 1 to 5. If the
DM is satisfied with these results then we terminate the algorithm otherwise we ask the DM
to input a new set of preferences.
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Variable Name Steady State Values Optimized Values

Independent and Dependent Variables
X1 5.42 6
X2 213 234
X3 2417 2631
X4 482 526
X5 1 1.051
X6 1 .958
X7 1 5
X8 1 5
X9 1 5
X10 1 5

Model Flux
V2 1.352 9.14

Table 1: Steady state and optimized concentrations of the all the variables and flux V2

6 Conclusion

In this paper, we consider the need to optimize more than one by product of metabolic
pathways which results into solving MOPs of S-systems. In solving the MOPs, we propose
to use the interactive fuzzy programming with preference criteria technique. This technique
is chosen due to its interactive nature. It allows a DM to input his preferences in the from of
preference criteria and underachievement tolerance values which are used in selection criteria
that provide a convenient way to define fuzzy membership functions. These membership
functions it turn determine which nondominated solution is selected.

We illustrate the technique using the simplified pathway of xanthine monophosphate
and guanosine monophosphate production. Since the purpose of this paper is to illustrate
how the technique works, we did not give too much importance into the biological sig-
nificance of our multi-objective optimization. However, in our future work, we intend to
apply multi-objective optimization to some existing and more complicated models such as
the fermentation pathway in Saccharomyces cerevisiae (yeast) [8] and citric acid production
pathway in Aspergillus niger (fungus) [9].
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