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Abstract

Let Lu = −
∑N
i,j=1 aij(x, u)Diju + c(x, u)u, c(x, r) ≥ α > 0. Consider the quasi-

linear elliptic equation Lu = f(x, u,∇u) on a bounded smooth domain Ω in RN ,
where |f(x, r, ξ)| ≤ C0 + h(|r|)|ξ|θ, 0 < θ < 2 and h is a locally bounded function. It
is shown that if the oscillations of aij(x, r) with respect to r are sufficiently small on
[−C0/α,C0/α] uniformly for x in Ω̄, then there exists a solution u inW 2,p(Ω)∩W 1,p

0 (Ω).

Keywords: quasilinear elliptic equation, W 2,p estimate, W 2,p(Ω)∩W 1,p
0 (Ω) solution

.

1 Introduction

Let Ω be a bounded C1,1 domain in RN , N ≥ 3, and let Lv, L, Dv, D be elliptic operators
defined by

Lvu = −
N∑

i,j=1

aij(x, v)Diju+ c(x, v)u,

Lu = Luu,

Dvu = −
N∑

i,j=1

Di(aij(x, v)Dju) + c(x, v)u, and

Du = Duu,

where
∑N
i,j=1 aij(x, r)ξiξj ≥ λ|ξ|2 for some positive constant λ.

For a positive integer m and a real number p, p ≥ 1, let

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 < |α| ≤ m},

‖u‖m,p = (

∫
Ω

∑
|α|≤m

|Dαu|p)
1
p ,
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Wm,p
0 (Ω) be the closure of C∞0 (Ω) in the space Wm,p(Ω) and

H1
0 (Ω) = W 1,2

0 (Ω).

Consider the quasilinear elliptic equation

Lu = f(x, u,∇u). (1)

Under the assumptions of a priori bounds and oscillations with respect to x of all possible
solutions in C2,β(Ω̄), O. A. Ladyzhenskaya and N. N. Ural’tseva proved the existence of
solutions in C2,β(Ω̄) for a general version of Equation (1) [7, p. 371]. If Ω is a bounded
domain (without smoothness constraints on the boundary) and aij , c are L∞ functions , L.
Boccardo, F. Murat and J. P. Puel [1] set up a weak maximum principle for approximating
solutions in H1

0 (Ω) ∩ L∞(Ω) to the elliptic equation in divergence form

Du = f(x, u,∇u), (2)

where
|f(x, r, ξ)| ≤ C0 + h(|r|)|ξ|2 (3)

with h being a locally bounded function defined on R+, and derived a solution in H1
0 (Ω) ∩

L∞(Ω). Furthermore, all solutions in H1
0 (Ω) ∩ L∞(Ω) lie in [−C0/α,C0/α].

It then arises readily to investigate W 2,p(Ω)∩W 1,p
0 (Ω) solutions to (1). Let a fixed point

x in Ω̄ and an interval I in R be given. We denote as osc aij(x, r; I) the oscillations of
aij(x, r) with respect to r, for r in I, that is

osc aij(x, r; I) = sup{|aij(x, r1)− aij(x, r2)| : r1, r2 ∈ I},

and
osc a(x, r; I) = max

1≤i,j≤N
osc aij(x, r; I).

In the light of the classical existence result of strong solutions in W 2,p(Ω) ∩W 1,p
0 (Ω) [3,

p. 241] to the linear elliptic equation

L0u = −
N∑

i,j=1

aij(x)Diju+ c(x)u = f(x), f ∈ Lp(Ω), (4)

[4] and [5] employed the perturbation method for W 2,p estimate of Equation (4) together
with the weak maximum principle of [1] when aij , c depend on both x and r, and derived the

existence result in W 2,p(Ω)∩W 1,p
0 (Ω) provided osc a(x, r;R) is sufficiently small uniformly

for x in Ω̄ and
|f(x, r, ξ)| ≤ C0 + h(|r|)|ξ|θ for 0 < θ < 2. (5)

Recently, the result in [6] improved the existence theorem of solutions for

f(x, r, ξ) = o[|r|+ h(|r|)|ξ|2]. (6)

This paper aims to extend the above results to the case that

|f(x, r, ξ)| ≤ C0 + h(|r|)|ξ|θ, 0 < θ < 2 (7)

and

osc a(x, r; [−C0/α,C0/α]) ≤ λ

C1
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for all x in Ω̄, where C1 depends on N , p and the diffeomorphism (see Lemma 1). Our
main result in Theorem 1 proves the existence of strong solutions to (1). We shall also
remark in Corollary 2 that the existence result to (2) remains valid if aij are independent
of r on [−C0/α,C0/α]. The main idea relies on the L∞ estimate of solutions to (2) and (1).
Proposition 1 then carries out a priori bounds for the solutions when 0 < θ < 2.

2 Preliminaries

Let aij , their derivatives Diaij , Draij and c are bounded Carathodory functions, and c ≥ α
for some positive number α. For simplicity, we denote

I0 = [−C0/α,C0/α],

W (Ω) = W 2,p(Ω) ∩W 1,p
0 (Ω),

Bt = {v ∈W (Ω) : ‖v‖2,p ≤ t}

and
g(v) = f(x, v,∇v)

and use C for a generic constant in this paper. Now assume that f is a Carathodory function
defined on Ω×R×RN satisfying (7) and, for v ∈W (Ω) , consider the equation

Lvu = g(v) (8)

in Ω. If p is greater than N , then there exists a unique solution u in W (Ω). We start with
a W 2,p estimate for the solutions in W (Ω). It is well known [3] that if u ∈ W 2,p(Ω) and
1 < p <∞, one has

‖u‖2,p ≤ C(‖u‖p + ‖L0u‖p).

For operators Lv, we quote the result from [4].

Lemma 1. Let Ω be a bounded domain in RN which is C1,1 diffeomorphic to a ball in RN ,
and the coefficients aij ∈ C0,1(Ω̄ × R), c ∈ L∞(Ω × R), |aij |, |c| ≤ Λ with Λ a positive
constant, i, j= 1, . . . , N . Then there exists a positive number C1 (depending on N , p and
the diffeomorphism) such that if

osc a(x, r;R) ≤ λ

C1

for all x in Ω̄, one has the estimate

‖u‖2,p ≤ C(‖Lvu‖p + ‖u‖p) (9)

for every u in W (Ω) and Lvu belonging to Lp(Ω), 1 < p < ∞, where C is a constant
(independent of v) depending on N, p, λ,Λ, ∂Ω,Ω, the diffeomorphism and the moduli of
continuity of aij(x, r) with respect to x in Ω̄.

Remark 1. The magnitude of osc a(x, r;R) fulfilling the purpose of Lemma 1 can be found
in [8, p. 23] if Ω is a ball in RN and in [4, p. 191] if Ω is C1,1 diffeomorphic to a ball in RN .

Remark 2. One can derive (9) using interior and exterior estimates similar to those in the
proof of Theorem 9.11 and Theorem 9.13 [3] with aij(x) replaced by aij(x, v(x)).
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In view of Lemma 1, if u is a W (Ω) solution to (8), then

‖u‖2,p ≤ C(‖g(v)‖p + ‖u‖p). (10)

Furthermore, an application of the weak maximum principle of A. D. Aleksandrov [3, p. 220]
implies that

‖u‖∞ ≤ C‖
g(v)

D∗
‖N ,

where D∗ is the geometric mean of the eigenvalues of the matrix [aij ], and C depends on N
and the diameter of Ω. By ellipticity, D∗ ≥ λ > 0, so

‖u‖p ≤ C‖g(v)‖p. (11)

Combining (10) and (11), one gets

‖u‖2,p ≤ C‖g(v)‖p. (12)

3 The Existence of Strong Solutions

In this section, we investigate the existence of strong solutions to (1) via the perturbation
method, where f satisfies (7), 0 < θ < 2.

Lemma 2. The map g̃ which assigns v in Bt to the W (Ω) solution u of (8) is continuous
in W 1,p(Ω) if p is greater than N .

Proof. See [4, p. 196]. 2

Also, we quote the following result of Theorem 2.1 in [1, p. 28].

Lemma 3. Assume that
|f1(x, r, ξ)| ≤ C + k(|r|)|ξ|2,

where k is an increasing function from R
+ into R+. If the solution u to

Du = f1(x, u,∇u)

is in H1
0 (Ω) ∩ L∞(Ω), then it varifies

−C0

α
≤ u ≤ C0

α

almost everywhere in Ω.

Remark 3. One can replace the increasing function k by a locally bounded function h in
Lemma 3 by setting

k(|r|) = sup{h(|s|) : 0 ≤ s ≤ r}.

Now, we reformulate (1),
Du = f̃(x, u,∇u),

where
f̃(x, u,∇u) = g(u)− [Diaij(x, u) +Draij(x, u)Diu]Dju.

Proposition 1. If u ∈ W (Ω) is a solution to (1) with the function f satisfying (7), then
u(x) ∈ I0 almost everywhere in Ω.
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Proof. Let ε be a sufficiently small positive number. By the inequality of arithmetic and
gemetric means

λ1a1 + λ2a2 ≥ aλ1
1 aλ2

2

for positive numbers λ1, λ2 satifying

λ1 + λ2 = 1,

one gets

λ1
ε

h(|r|)
+ λ2[

h(|r|)
ε

]
λ1
λ2 |ξ|2 ≥ [

ε

h(|r|)
]λ1 [

h(|r|)
ε

]
λ1
λ2
·λ2 |ξ|2λ2 .

When λ2 equals to θ/2,
h(|r|)|ξ|θ ≤ ε+ h1(|r|)|ξ|2,

where h1 is a locally bounded function, which in turn implies that

|f̃ | ≤ C0 + ε+ h2(|r|)|ξ|2

for some locally bounded function h2. Since ε is arbitrary, applying Remark 3 and Lemma
3, one concludes that u(x) lies in I0 almost everywhere in Ω for every solution u ∈W (Ω) to
Equation (1) with the function f satisfying (7). 2

It then suffices to examine the existence of strong solutions to (1) with aij(x, r) replaced
by

bij(x, r) =


aij(x,

−C0

α−α0
), if r < −C0

α

aij(x, r), if −C0

α ≤ r ≤ C0

α .
aij(x,

C0

α−α0
), if r > C0

α

(13)

Denote L̃v and L̃ the elliptic operators defined by

L̃vu = −
N∑

i,j=1

bij(x, v)Diju+ c(x, v)u

and
L̃u = L̃uu.

Consider now the equation
L̃u = g(u) (14)

in Ω. Let gn be the truncation of g by ±n. For v in W 1,p(Ω), the Dirichlet problem

L̃vu = gn(v) (15)

has a unique solution un,v in W (Ω). We note here that

osc bij(x, r;R) = osc aij(x, r; I0).

So if

osc a(x, r; I0) ≤ λ

C1

for x in Ω̄, the estimate (9) holds. Lemma 2 and the Schauder fixed point theorem imply
that there exists a W (Ω) solution un to the truncated equation

L̃u = gn(u). (16)

We proceed to the W 2,p estimate of (un).
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Lemma 4. If

osc a(x, r; I0) ≤ λ

C1

for all x in Ω̄, then the approximating solutions (un) to (14) are W 2,p bounded.

Proof. Since f satisfies (7),

|gn(un)| ≤ C0 + α0|un|+ h(|un|)(Cε + ε|∇un|2).

Thus, by Proposition 1,

|gn(un)| ≤ C + ε|∇un|2.

Also, because each un belongs to L∞(Ω)∩W 2,p(Ω), from the Gagliardo-Nirenberg interpo-
lation theorem [2, p. 194], we obtain

‖∇un‖22p ≤ C‖un‖∞‖un‖2,p.

So

‖gn(un)‖p ≤ C + ε‖un‖2,p. (17)

Combining (9) and (17), one deduces that

‖un‖2,p ≤ C(‖un‖p + ‖gn(un)‖p)
≤ C + ε‖un‖2,p.

We get a W 2,p bounded sequence (un) if ε is sufficiently small. 2

Once L∞ and W 2,p bounds are established, the existence of solutions in W (Ω) can be
deduced as in the proof of Theorem 3.1 [4, p. 201]. For the sake of completion, we quote
the proof in Theorem 1.

Theorem 1. Let Ω be C1,1 smooth in RN , N ≥ 3, aij ∈ C0,1(Ω̄ ×R), aij, Diaij, Draij,
c ∈ L∞(Ω×R). Then there exists a solution u in W (Ω) to Equation (1) provided

osc a(x, r; I0) ≤ λ

C1

for all x in Ω̄.

Proof. By Lemma 4, we get W 2,p bounded approximating solutions to (14). It then follows
from the compact imbedding W 2,p(Ω) → W 1,p(Ω) that there exists a subsequence, still
denoted by (un), such that un → u, ∇un → ∇u almost everywhere and un → u in W 1,p

0 (Ω).
Now, since ‖un‖2,p are bounded by some positive quantity t and the set Bt is closed in
W 1,p(Ω), the limit u of (un) belongs to W 2,p(Ω). By passing to the limit and using the
Vitali Convergence Theorem, one deduces that L̃un → L̃u in D́(Ω) and gn(un) → g(u) in
L1(Ω) [1] which proves that u is a W (Ω) solution to (14).

Finally, since solutions to (1) lie in I0 almost everywhere in Ω, aij(x, u(x)) are equal to
bij(x, u(x)). One concludes that u is in fact a solution to (1). 2

Corollary 1. There exists a solution in W (Ω) to the elliptic equation (2) if aij are inde-
pendent of r for |r| ≤ C0/α.
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Proof. In view of Proposition 1, consider Equation (2) with aij truncated by bij in (13),
that is

−
N∑

i,j=1

Di(bij(x, u)Dju) + c(x, u)u = g(u). (18)

Since aij are independent of r and bij(x, r) equal to aij(x, r) for r in I0, bij(x, r) can be
written by bij(x) on I0. Hence, (18) can be reformulated as

−
N∑

i,j=1

bij(x)Diju+ c(x, u)u = f̂(x, u,∇u), (19)

where

f̂(x, u,∇u) = g(u) +

N∑
i,j=1

Dibij(x)Dju.

One can then get a W 2,p bounded approximating solution sequence (un) to

−
N∑

i,j=1

bij(x)Diju+ c(x, u)u = f̂n(x, u,∇u)

without assuming small oscillations of bij(x, r) to r. Applying the proof in Theorem 1, there
exists a W (Ω) solution u to (19). Finally, since solutions to (2) lie in I0 almost everywhere
in Ω and aij(x, u(x)) equal to bij(x) for |u(x)| ≤ C0/α, the solution u(x) to (19) in fact is
a solution to (2). 2
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