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Abstract
Let Lu = le].\szl aij(z,u)Diju + c(z,u)u, c(xz,r) > a > 0. Consider the quasi-
linear elliptic equation Lu = f(z,u, Vu) on a bounded smooth domain Q in R",
where |f(z,r,€)] < Co+ h(]r])|€|°, 0 < 6§ < 2 and h is a locally bounded function. It

is shown that if the oscillations of a;;(z,r) with respect to r are sufficiently small on
[~Co/a, Co/a] uniformly for z in , then there exists a solution u in WP (Q)NW, P (Q).
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1 Introduction

Let Q be a bounded C'! domain in RN, N > 3, and let L,, L, D,, D be elliptic operators
defined by

N
L'L)U = — Z aij(x,v)Diju—i-c(x,v)u,
i=1
Lu = Lyu,
N
Dvu = — Z Di(aij(xyv)Dju) +c(x,v)u, and
ij=1
Du = Dyu,

where Zﬁ;zl aij(z,7)&&; > NEJ? for some positive constant .

For a positive integer m and a real number p, p > 1, let

WmP(Q) = {u e LP(Q) : D*u € LP(Q)for 0 < |a] < m},

ltllmp = ( / S [Deup)?,

lal<m
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WP () be the closure of C§°(f2) in the space W™P(§) and
HL(S) = W2 ().
Consider the quasilinear elliptic equation
Lu = f(z,u, Vu). (1)

Under the assumptions of a priori bounds and oscillations with respect to = of all possible
solutions in C%7(Q), O. A. Ladyzhenskaya and N. N. Ural'tseva proved the existence of
solutions in C?#(Q) for a general version of Equation (1) [7, p. 371]. If Q is a bounded
domain (without smoothness constraints on the boundary) and a;;, ¢ are L functions , L.
Boccardo, F. Murat and J. P. Puel [1] set up a weak maximum principle for approximating
solutions in Hj(2) N L>(Q) to the elliptic equation in divergence form

Du = f(z,u, Vu), (2)

where
|f (@, r,€)] < Co+ h(|r])[¢[* 3)
with A being a locally bounded function defined on R™, and derived a solution in Hg (£2) N
L°°(€2). Furthermore, all solutions in Hg (2) N L>° () lie in [-Cy/ar, Co /.
It then arises readily to investigate W22 (Q)NW, ¥ () solutions to (1). Let a fixed point
2 in Q and an interval I in IR be given. We denote as osc a;j(z, ;1) the oscillations of
a;j(x,r) with respect to r, for r in I, that is

osca;j(z,r; 1) = sup{|a;;(z,r1) — a;;(z,72)| : r1,72 € I},

and
1) = (e, I).
osca(x,r;I) 1§%?§Noscazj (z,r;1)
In the light of the classical existence result of strong solutions in W?2?(Q) N WyP(Q) [3,
p. 241] to the linear elliptic equation

N
Lou = — Z a;j(z)Diju + c(z)u = f(x), f € LP(Q), (4)

ij=1

[4] and [5] employed the perturbation method for W2? estimate of Equation (4) together
with the weak maximum principle of [1] when a;;, ¢ depend on both z and r, and derived the
existence result in W2P(Q) N W, P (Q) provided osca(z,r; R) is sufficiently small uniformly
for x in Q and

|f(x,7,€)| < Co+ h(|r])|€] for 0 < 6 < 2. (5)
Recently, the result in [6] improved the existence theorem of solutions for
flw,r,6) = oflr| + h(|r])I&[]- (6)
This paper aims to extend the above results to the case that
[f (@, )] < Co+ h(r]Igl,0 <0 <2 (7)
and
A

osca(z,r;[—Co/c,Co/al) < =
Ch
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for all z in Q, where C; depends on N, p and the diffeomorphism (see Lemma 1). Our
main result in Theorem 1 proves the existence of strong solutions to (1). We shall also
remark in Corollary 2 that the existence result to (2) remains valid if a,; are independent
of r on [-Cy/a, Cy/a]. The main idea relies on the L™ estimate of solutions to (2) and (1).
Proposition 1 then carries out a priori bounds for the solutions when 0 < 6 < 2.

2 Preliminaries

Let a;;, their derivatives D;a;;, Dra;; and c are bounded Carathodory functions, and ¢ > «
for some positive number «. For simplicity, we denote

Iy = [-Co/a, Co/al,
W (Q) = WP(Q) n W, P (Q),
By ={veW(Q):|vlz, <t}

and
g(’l)) = f(xavv Vv)

and use C for a generic constant in this paper. Now assume that f is a Carathodory function
defined on © x R x R satisfying (7) and, for v € W() , consider the equation

Lyu= g(’U) (8)

in Q. If p is greater than N, then there exists a unique solution u in W (). We start with
a W2P estimate for the solutions in W (Q). It is well known [3] that if u € W*P(Q) and
1 < p < o0, one has

[ullzp < Cllullp + | Loullp)-

For operators L,, we quote the result from [4].
Lemma 1. Let Q be a bounded domain in RN which is CY' diffeomorphic to a ball in RV,
and the coefficients a;; € CO1(Q x R), ¢ € L®(Q x R), |ai;|, || < A with A a positive

constant, i, =1, ..., N. Then there exists a positive number Cy (depending on N, p and
the diffeomorphism) such that if

A
osca(z,m;R) < o
for all z in Q, one has the estimate
lullzp < C(ILvully + [ullp) (9)

for every u in W(Q2) and Lyu belonging to LP(Q), 1 < p < oo, where C is a constant
(independent of v) depending on N,p, A\, A, 00,9, the diffeomorphism and the moduli of
continuity of a;j(x,r) with respect to x in (1.

Remark 1. The magnitude of osc a(z, r; R) fulfilling the purpose of Lemma 1 can be found
in [8, p. 23] if Q is a ball in R and in [4, p. 191] if Q is C*! diffeomorphic to a ball in RV .

Remark 2. One can derive (9) using interior and exterior estimates similar to those in the
proof of Theorem 9.11 and Theorem 9.13 [3] with a;;(x) replaced by a;;(z,v(z)).
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In view of Lemma 1, if u is a W(£2) solution to (8), then

lullz.p < CUlg()lp + llullp)- (10)

Furthermore, an application of the weak maximum principle of A. D. Aleksandrov [3, p. 220]
implies that

g(v)
D*
where D* is the geometric mean of the eigenvalues of the matrix [a;;], and C' depends on N
and the diameter of Q. By ellipticity, D* > A > 0, so

lullp < Cllg(@)ll,- (11)

[ulloe < ClI=57 1IN,

Combining (10) and (11), one gets

[ullz.p < Cllg(v)lp- (12)

3 The Existence of Strong Solutions

In this section, we investigate the existence of strong solutions to (1) via the perturbation
method, where f satisfies (7), 0 < 6 < 2.

Lemma 2. The map § which assigns v in By to the W () solution u of (8) is continuous
in WYP(Q) if p is greater than N.

Proof. See [4, p. 196]. O
Also, we quote the following result of Theorem 2.1 in [1, p. 28].

Lemma 3. Assume that

|fi(a,m )] < O+ k(Ir])I€f*,
where k is an increasing function from RY into RY. If the solution u to
Du = fl(l‘vuvv’uJ

is in H}(Q) N L>®(Q), then it varifies

almost everywhere in Q.

Remark 3. One can replace the increasing function k£ by a locally bounded function A in
Lemma 3 by setting
k(|r|) = sup{h(]s]) : 0 < s <r}.
Now, we reformulate (1),

Du = f(I‘,U,VU),

where

f(z,u, Vu) = g(u) — [D;a;j(z,u) + Dyraij(x, w)DulDju.

Proposition 1. If u € W(Q) is a solution to (1) with the function f satisfying (7), then
u(z) € Iy almost everywhere in 2.
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Proof. Let € be a sufficiently small positive number. By the inequality of arithmetic and
gemetric means
)\1a1 + )\2(12 Z ai\lag‘z

for positive numbers A1, Ao satifying
M+ =1,

one gets

h(lr)) 2 o € h(Ir) 205z 012
A € by o > [ MMV xg A2 Az
When A2 equals to 6/2,

(DI’ < e+ ha(|r]IEl?,

where hy is a locally bounded function, which in turn implies that
|1 < Co+ e+ ha(Ir])€[

for some locally bounded function hsy. Since € is arbitrary, applying Remark 3 and Lemma
3, one concludes that u(x) lies in Iy almost everywhere in 2 for every solution u € W () to
Equation (1) with the function f satisfying (7). O

It then suffices to examine the existence of strong solutions to (1) with a;;(x,r) replaced
by

aij(x,a O?U)’ 1f’l"<7TCO
bij((ﬂ,’f’) = aij(x,g), if _qCO S ’I'CS %. (13)
aij(z, 52%-), if r > =0

Denote L, and L the elliptic operators defined by

N
Lou = — Z bij(z,v)D;ju + c(x, v)u
ij=1

and R 3
Lu = L,u.
Consider now the equation .
Lu = g(u) (14)
in Q. Let g, be the truncation of g by +n. For v in W1?(Q), the Dirichlet problem
Lyu = gn(v) (15)

has a unique solution u, , in W (£2). We note here that
oscb;j(z,r; R) = oscay;(x, 75 Ip).
So if
A

1) < —
osca(z,r;Iy) < c

for & in €2, the estimate (9) holds. Lemma 2 and the Schauder fixed point theorem imply
that there exists a W(2) solution u,, to the truncated equation

Lu = g, (u). (16)
We proceed to the W?2? estimate of (uy,).
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Lemma 4. If

A
osca(z,r;Iy) < —
1
for all x in Q, then the approzimating solutions (u,) to (14) are W*P bounded.

Proof. Since f satisfies (7),
|gn (un)| < Co + aolun| + h(lun|)(Ce + €|vun‘2)'

Thus, by Proposition 1,
|gn (un)| < C + €|Vu, |2

Also, because each u,, belongs to L>(2) N W?2P(Q), from the Gagliardo-Nirenberg interpo-
lation theorem [2, p. 194], we obtain

IVunll3, < Cllunlloollunll2p-

So
lgn (un)llp < C + €l|un|l2,p- (17)

Combining (9) and (17), one deduces that

[unllzp < Cllunllp + llgn(un)llp)
< O+ eflunllzp.
We get a W2P bounded sequence (u,,) if € is sufficiently small. O

Once L and WP bounds are established, the existence of solutions in W (£2) can be
deduced as in the proof of Theorem 3.1 [4, p. 201]. For the sake of completion, we quote
the proof in Theorem 1.

Theorem 1. Let Q be C%' smooth in RN, N > 3, ai; € Co(Q x R), aij, Dia;j, Dyagj,
c € L>®(Q2 x R). Then there exists a solution u in W () to Equation (1) provided

A
osca(z,r;Iy) < o

for all z in Q.

Proof. By Lemma 4, we get W?? bounded approximating solutions to (14). It then follows
from the compact imbedding W2P(Q2) — WP() that there exists a subsequence, still
denoted by (uy,), such that w, — u, Vu,, — Vu almost everywhere and u,, — v in WO1 P(Q).
Now, since ||uy||2,, are bounded by some positive quantity ¢ and the set By is closed in
WLP(Q), the limit u of (u,) belongs to W2P?(€). By passing to the limit and using the
Vitali Convergence Theorem, one deduces that Lu,, — Lu in ©(Q) and g, (u,) — g(u) in
L'(Q) [1] which proves that u is a W () solution to (14).

Finally, since solutions to (1) lie in Iy almost everywhere in 2, a;;(x, u(x)) are equal to
bij(z,u(x)). One concludes that w is in fact a solution to (1). O

Corollary 1. There exists a solution in W(Q) to the elliptic equation (2) if a;; are inde-
pendent of v for |r| < Cy/a.
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Proof. In view of Proposition 1, consider Equation (2) with a;; truncated by b;; in (13),

that is
N

- Z D;(b;j(xz,w)Dju) + c(z, v)u = g(u). (18)
ij=1
Since a;; are independent of r and b;;(x,r) equal to a;;(z,r) for r in Iy, b;;(x,r) can be
written by b;;(z) on Iy. Hence, (18) can be reformulated as

N
— 3" bij(@) Diju+ e(w, u)u = f(z,u, Vu), (19)
i,j=1
where

N

i,7=1

One can then get a WP bounded approximating solution sequence (u,,) to

N
- Z bij(z)Diju + c(z,u)u = fn(x,u,Vu)

i,5=1

without assuming small oscillations of b;;(x, ) to r. Applying the proof in Theorem 1, there
exists a W() solution u to (19). Finally, since solutions to (2) lie in I almost everywhere
in Q and a;;(z, u(z)) equal to b;;(x) for |u(z)| < Cp/a, the solution u(z) to (19) in fact is
a solution to (2). O
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