
MATIMYÁS MATEMATIKA Journal of the Mathematical Society of the Philippines
ISSN 0115-6926 Vol. 34 Nos. 1-2 (2011) pp. 87-97

Python Solver for Stochastic Differential Equations

Chu-Ching Huang
Center for General Education

Chang-Gung University

Taiwan
email: cchuang@mail.cgu.edu.tw

Abstract

As an alternative to proprietary computer algebra systems (CAS), such as Mat-
lab and Maple, open source computer scripting language Python and its applications
carry a variety of comprehensive capacities which have potential for doing professional
mathematical work. PyS3 DE is a Python module with the aims to establish full-
featured CAS for studying stochastic differential equations (SDEs). PyS3 DE features:
a) symbolic solvers for SDEs, linear, reduced nonlinear SDE and Kolmogorov back-
ward equation; b) stochastic numerical schemes, Euler and Milstein methods; and c)
visualization tools for calculated data and Feynman-Kac simulation etc.

Although PyS3 DE can run on almost all operation systems in which the Python
environment has been well installed, TEXmacs, an intelligent scientific publishing sys-
tem, is introduced to provide more friendly graphical user interface (GUI) over the
LATEX system and is capable of directly communicating with the Python environment.
Incorporated with Sage’s notebook, PyS3 DE’s is also accessible remotely through any
web browser and is able to do web computation. Creating a viable web server that is
able to do Python computation PyS3 DE is also discussed in this paper.

Keywords: Stochastic Differential Equations (SDEs), PyS3 DE, Kolmogorov back-
ward equation, TEXmacs, Sage.

1 Introduction

Differential equations are used to illustrate the evolution of a system; stochastic differential
equations (SDEs) arise when a random noise (or white noise) is introduced into differen-
tiation equations. White noise process, Xt, is formally defined as the derivative of the
Brownian motion, W (t) = Wt:

Xt =
d

dt
Wt

It stands for the phenomenon of the violent changes in a system or unpredictable data. The
theory of SDEs is popular in both theoretical and applied science since it could describe
actual evolution of system. However, white noise does not exist as a function of t in classical
analysis since the trajectory of a Brownian motion is nowhere differentiable.

During the middle of last century, Japanese mathematician K. Itô and Russian mathe-
matician Stratanovich established the fundamental theory of stochastic calculus which could
be used to study SDEs. But a very theoretical approach to stochastic computation also in-
creases the learning curve steeply and makes it very difficult to use. Although there are some
computer packages developed to do stochastic calculation, new problems arise – either the
development language (Axiom, [Kendall]) is not popular or proprietary software (Maple,
[Cyganowski etc]) is used. To solve these problems, we decided to develop a computer
package able to do stochastic calculus and solve SDEs based on another reliable approach.

87

88 Chu-Ching Huang

As a computer language, Python owns plenty of cutting-edge features: open-source,
object-oriented interpreter language and tons of libraries or extensions (for instance, in-
teractive environment, numerical analysis, visualization etc). Though Python is a general
purpose, high level language with compact core library, incorporating its modules/exten-
sions with the following advanced features makes it popular in the scientific community and
academe:

• Clean syntax that is easy to work with;

• Expressions, conditions, loops, etc;

• Data types (numbers, lists, array and matrix etc.);

• Program structure (functions, objects, modules, etc.);

• Numerical methods (Scipy/Numpy): Working with arrays, linear algebra, random
number generation and numerical integration and numerical optimization, etc;

• Symbolic calculation (Sympy, Sage): basic calculus operations, solvers for ordinary
differential equations (ODEs) and algebraic equation and mathematics expression, etc;

• Visualization (Matplotlib, Sage): 2D/3D pictures and animation etc;

• Accessible in library with foreign languages, Fortran and C/C++, etc.

The quoted texts in boldface type above are the additional Python modules already in-
troduced into our project. The superior principles in setting-up our Python computing
environment are compactness and efficiency .

Sage is another comprehensive software that is a complete environment for symbolic
and numerical computing, using an extension of Python as programming language. Sage
integrates more than 100 Python packages/extensions and is well-tuned for running Python
or other mathematical software systems with unified user interface. The symbolic subsystem
of Sage provides an environment similar to popular Maple or Mathematica. Sage uses a
hybrid C++ and Cython enhanced library, Pynac, on the top of GiNaC (a very efficient C++
library for symbolic computing), to work with symbolic expressions. High level symbolic
facilities of Sage use Maxima and naive Sage-cloned module behind the scenes.

With respect to pure Python symbolic environment, we use only Sympy module which
is written in pure Python and trivial to install. Both Sympy and Sage have seemingly
borrowed naming conventions from GiNaC and Swiginac, a SWIG-based Python interface
to GiNaC library, so the syntax differences between two packages are small.

In particular, Sympy owns a powerful submodule, dsolve(), which can solve ordinary
differential equations (ODEs). Sage uses Maxima as backend of ODEs’ solver. To keep the
consistency capable of running on both desktop and internet environment, we decided to
develop SDEs solver independent on neither Sympy’s nor Sage’s ODEs solver.

Besides available computing abilities for a broad range of mathematical functionality, a
full-featured scientific computing environment should support high-quality publishing sys-
tem for continuing documentation work after computation. The scientific publishing system,
TEXmacs, was developed with the aim of reducing cost of making high-quality documenta-
tion and producing high-quality user interfaces. Unlike Python or Sage, TEXmacs itself does
not provide any computing facilities but offers an intelligent what-you-see-is-what-you-get
(WYSIWYG) system based on LATEX and Guile. The purpose of integrating TEXmacs into
computational environment is to support optimized typesetting system with friendly LATEX
front-end interface and intelligent plug-ins interface for running external applications. The

Python Solver for Stochastic Differential Equations 89

former make professional mathematical document publishing easily; the latter allows us to
run external program (Python, Sage etc) directly within document and print out result.
This cutting-edge plug-ins feature actually shortens the development time in our project.

Generally, professional computing software requires high-standard running environment,
including software and hardware. Live system technology brings a new perspective view
of software engineering: nothing is necessarily pre-installed on your hard drive, and a live
system provides a wide collection of customized software ready to use after booting from its
host media, CD or USB flash driver.

Porteus is the host system we chose. Porteus is a modern, portable, small and fast Linux
operating system with a modular approach and outstanding design. Despite its small size
(64bit system under 300Mb and 32bit system under 200Mb), other packages and modules
are made into individual modules and can be activated to work after booting up. The
modular approach allows us to design different platform that allow practical use and make
system maintenance more efficienct.

2 Stochastic Differential Equations

The Python computing environment is built up based on Python, Numpy, Scipy, scitools
and Sage. The implement for SDEs solver, PyS3 DE, is named from the first letters of the
main software we use:

PyS3 DE =Python, Sage, SciPy for Stochastic Differential Equations

In brief, this implement includes symbolic solver for SDEs, numerical schemes and visu-
alization function. Here, only symbolic facilities will be introduced in detail.

2.1 Itô and Stratonovich SDEs

The differentiation terms over white noise have different formulations depending on the
approach used. In general, there are two kinds of approaches: Itô and Stratonovich ap-
proach. Itô version uses left value rule to present the differential term of Brownian motion
[Øksendal], dWt, with respect to the middle value rule for Stratonovich version. In general,
different kinds of one dimensional SDEs are represented by different expressions:

a) Itô version:

dXt = a (t,Xt) dt+ b (t,Xt) dWt (2.1)

b) Stratonovich version:

dXt = ã (t,Xt)dt+ b (t,Xt) ◦ dWt (2.2)

Both the solutions, Xt, are the same with the relation:

ã (t, x) = a (t, x)− 1

2
b (t, x)

∂b

∂x
(t, x) (2.3)

or reversely:

a (t, x) = ã (t, x) +
1

2
b (t, x)

∂b

∂x
(t, x) (2.4)

The stochastic integral (Stratonovich version) when using the midpoint value rule has a
result just like in deterministic calculus:∫ T

0

Wt ◦ dWt =
1

2
W 2

T (2.5)

90 Chu-Ching Huang

and ∫ T

0

WtdWt =
1

2
W 2

T −
1

2
T (2.6)

by using left value rule (Itô version), respectively.
All the linear SDEs can be solved theoretically. Some kinds of Itô SDEs other than the

linear case can be converted to Stratonovich SDEs and become solvable by the rules or
tools used in deterministic calculus.

Here is an example of how to use Sympy to solve SDEs. Note that variables and functions
have to be declared, symbols(“· · ·”) for variable and Function(“· · ·”) for function,
before they are used:

Example 1 (Python with TEXmacs Python plugins)
Consider the following SDEs:

dXt = Xm
t ◦ dWt, X0 = x (2.7)

where m is an positive integer. We directly use Sympy’s ODE solver to solve first case and
use it’s integration to solve second case:

Python] from sympy import *

Python] from sympy.abc import t,x,k,N,m,C

Python] X = Function("X")

Python] W,a =symbols("W alpha")

Python] b = X(W)**m

Python] X_prime=Derivative(X(W), W)

Python] dsolve(X_prime-b, X(W))

X(W) == (C1 - W*m + W)**(1/(-m + 1))

The steps in the solution are: activating Python plugin, input Python codes and print out
result. ”dsolve()” could solve Stratonovich SDEs directly and Itô SDEs with only little
modification.

2.2 Symbolic SDEs Solver, of PyS3 DE

The theory of existence and uniqueness of solutions of linear SDEs can be found in the
references, (Øksendal, Klebaner). The first type we consider is the the following linear
SDE:

dXt = (a1 (t)Xt + a2 (t)) dt+ (b1 (t)Xt + b2 (t)) dWt (2.8)

Its solution is known as follows:

Xt = Φt0,t

(
Xt0 +

∫ t

t0

(a21 (s)− b1 (s) b2 (s)) Φ−1
t0,sds+

∫ t

t0

(b2 (s)) Φ−1
t0,sdWs

)
(2.9)

where the integration factor is:

Φt0,t = exp

(∫ t

t0

(
a2 (s)− 1

2
b21 (s)

)
ds+

∫ t

t0

b1 (s) dWs

)
(2.10)

This result is alreadly implemented in PyS3 DE .

Python Solver for Stochastic Differential Equations 91

Certain types of SDEs can also be solved by converting into integrable Stratonovich
SDE. Consider the following Itô SDE:

dXt =

(
α (t) b (Xt) +

1

2
b (Xt) b

′Xt

)
dt+ b (Xt) dWt (2.11)

which is equivalent to the following Stratonovich SDE:

dXt = α (t) b (Xt) dt+ b (Xt) ◦ dWt

And its solution is

Xt = ψ−1

(∫ t

α (s) ds+Wt + ψ (X0)

)
(2.12)

where

ψ (x) =

∫ x ds

b (s)

This case and linear case forms the main part of SDE solver in PyS3 DE.

Example 2 Consider the SDE:

dXt =

(
2Xt

1 + t
− a (1 + t)

2

)
dt+ a (1 + t)

2
dWt (2.13)

where t (0) = t0, X0 = x0 and a > 0. By PyS3 DE, the resulting solution is:
Python] from pysde import *

Python] x,dx,w,dw,t,dt,a=symbols(’x dx w dw t dt a’)

Python] x0 =Symbol(’x0’); t0 = Symbol(’t0’)

Python] drift=2*x/(1+t)-a*(1+t)**2;diffusion=a*(1+t)**2

Python] sol=SDE_solver(drift,diffusion,t0,x0)

Python] pprint(sol)

2 / 2 2 2 \
(t + 1) *\- a*t*(t0 + 1) + a*t0*(t0 + 1) + a*w*(t0 + 1) + x0/

--

2

(t0 + 1)

The function, SDE solver(), gives the solution of (14) as follows:

Xt =

(
1 + t

1 + t0

)2 (
x0 + a (t0 − t) (1 + t0)2 + a (1 + t0)2Wt

)
(2.14)

Example 3 Consider another SDE:

dXt = −
(

2Xt

1− t

)
dt+

√
t (1− t)dWt (2.15)

where 0 6 t < 1 and X0 = x0. By the PyS3 DE computing, the solution involves Gaussian
processes other than Wiener processes Wt:
Python] drift=-2*x/(1+t)

92 Chu-Ching Huang

Python] diffusion=sqrt(t*(1-t))

Python] sol=SDE_solver(drift,diffusion,t0,x0)

Python] print(sol)

(t0 + 1)**2*(x0 + N(0, -t**7/(7*t0**4 + 28*t0**3 + 42*t0**2

+ 28*t0 + 7) - t**6/(2*t0**4 + 8*t0**3 + 12*t0**2 + 8*t0 + 2)

- 2*t**5/(5*t0**4 + 20*t0**3 + 30*t0**2 + 20*t0 + 5) +

t**4/(2*t0**4 + 8*t0**3 + 12*t0**2 + 8*t0 + 2) + t**3/(t0**4 + 4*t0**3 + 6*t0**2

+ 4*t0 + 1) + t**2/(2*t0**4 + 8*t0**3 + 12*t0**2 + 8*t0 + 2)))/(t + 1)**2

Simplifying the above computation gives:

Xt =

(
1− t0
1− t

)2
(
x0 +N

(
0,

t2+t4−t6
2 + t3 − 2

5 t
5 − t7

7

(1 + t0)
4

))
(2.16)

where N
(
µ, σ2

)
represents the Gaussian process with mean µ and variance σ2 which is

implemented in PyS3 DE as Python class. It is obvious that Xt is a Gaussian process.

2.3 Stationary Solution for Kolmogorov Forward Equation

The solution of SDE,
dXt = µ (Xt) dt+ σ (Xt) dWt (2.17)

is a process in which its probability density function, f (x, t), satisfies Kolmogorov forward
equation:

∂f

∂t
=
∂ (µ (x) f (x, t))

∂x
+
∂
(
σ2 (x) f (x, t)

)
∂x2

(2.18)

It is well-known as not all SDEs in (2.18) can be solved, but we can still discuss its
probability density function in (2.19) as it has reached its equilibrium. Stationary solution
of the probability density function of (2.19) is given by Wright’s formula [Wright, Cobb]:

f (x) =
ψ

σ2
exp

[∫ x µ (s)

σ2 (s)
ds

]
(2.19)

where ψ is the factor chosen so that
∫

Ω
f (x) dx = 1.

PyS3 DE provides the function, KolmogorovFE Spdf(µ, σ2[,a,b]), to solve the sta-
tionary probability density function, f (x). The option, [a,b] is set to be [−∞,∞] in default.
In the following Python session, three cases are calculated:

Normal case : dXt = r (G−Xt) dt+
√
εdWt

Gamma case : dXt = r (G−Xt) dt+
√
εXtdWt

Beta case : dXt = r (G−Xt) dt+
√
εXt (1−Xt)dWt

where r, ε > 0.
Python] from pysde import *

Python] x,dx=symbols(’x dx’)

Python] t0=0;x0=1

Python] r,G,e,d=symbols(’r G epsilon delta’)

Python] l=sde.KolmogorovFE_Spdf(r*(G-x),e*x*(1-x),0,1)

Python Solver for Stochastic Differential Equations 93

Python] pprint(l.subs({e:r*d}))

G*r*W(W) G*r*W(W) r*W(W)

-------- - 1 - -------- - 1 + ------

delta delta delta /r*W(W)\
x *(-x + 1) *gamma|------|

\delta /

/ / 1\ \
|G*r*|-1 + -|*W(W)|

/G*r*W(W)\ | \ G/ |

gamma|--------|*gamma|-----------------|

\ delta / \ delta /

where gamma (x) represents Gamma function with x parameter.

2.4 Other Python Computation

PyS3 DE also has basic functions which can be used to a solve Kolmogorov backward partial dif-
ferential equation. For general SDEs,

dXs = µ (s,Xs) ds+ σ (s,Xs) dWs (2.20)

Xt = x

where t 6 s 6 T . Suppose that the solution of the system is X
(t,x)
s . Then

u (t, T, x) = E [ϕ (XT) |Xt = x] = E
[
ϕ
(
X

(t,x)
T

)]
(2.21)

would satisfy the following Kolmogorov backward partial differential equation:

∂u

∂t
+ µ (t, x)

∂u

∂x
+

1

2
σ2 (t, x)

∂u

∂x2
= 0 (2.22)

u (T, T, x) = ϕ (x)

∂u

∂t
− µ (t, x)

∂u

∂x
− 1

2
σ2 (t, x)

∂u

∂x2
= 0

u (t, t, x) = ϕ (x)

where ϕ (x) is smooth.
Consider the function which satisfies the following pde:

∂u

∂t
+

1

2

∂u

∂x2
= 0

u (T, T, x) = e−x2/2

where the diffusion process related to u (t, T, x) is equivalent to the solution of the following SDE:

dXs = dWs, X0 = x

⇒ Xu = x+Wu −Wt

Therefore, the solution of PDE can be derived as follows:

u (t, T, x) = E
[
e−X2

T /2 |Xt = x
]

=
1√

T − t+ 1
e
− x2

2(T−t+1)

The following Python codes give the same result:

94 Chu-Ching Huang

Python] from pysde import *

Python] T,t,x,y,w = symbols(" T t x y w")

Python] drift=simplify(0);diffusion=simplify(1)

Python] sol1=SDE_solver(drift,diffusion,t,x)

Python] func=-(w+x)**2/2-w**2/2/(T-t)

Python] l=normal_int(func,w)/sqrt(2*pi*(T-t))

Python] pprint(simplify(l))

2 2

x x

- -- + -----------------

2 /1 1 \
4*|- + ---------|

/ T - t \2 2*(T - t)/

/ -------- *e

\/ T - t + 1

\/ T - t

Here, we use PyS3 DE’ integration rule, normal int() , for evaluating integral of function,
exp

(
Ax2 +Bx+ C

)
.

Another reducible nonlinear SDE we consider is in the following form:

Theorem 2.4.1 The solution of general SDE:

dXt = f (t,Xt) dt+ b (t)XtdWt, X0 = x > 0 (2.23)

where f : R×R→ R and b : R→ R are continuous, is

Xt = F−1
t Yt

where

Ft = exp

(
−
∫ t

bdWs +
1

2

∫ t

b2ds

)
(2.24)

and Yt is the solution of the following:

dYt

dt
= Ftf

(
t, F−1

t Y (t)
)
, Y0 = x > 0 (2.25)

Proof: Use the method of integating factor and let Yt = FtXt.

Consider another nonlinear SDE solvable by Sympy’s dsolve() as follows:

dXt =
1

Xt
dt+ bXtdWt, X0 = x > 0 (2.26)

where b, x are constants. Then

Ft = exp

(
−
∫ t

bdWs +
1

2

∫ t

b2ds

)
and let Yt = XtFt, we have

Xt = exp

(
bWt −

1

2
b2t

)√
x2 + 2

∫ t

0

exp (−2bWs + b2s) ds (2.27)

Python Solver for Stochastic Differential Equations 95

Here the Python codes which solve (2.25) by Sympy’s ODE solver, dsolve():

Python] W,b,r=symbols("W,b,gamma")

Python] X=Function("W")

Python] F=exp(-integrate(b,W)+integrate(b*b,t)/2)

Python] Y = Function("Y")(t)

Python] WW=Function("WW")(t)

Python] rr=r.subs({X(W):Y/F})

Python] Y_prime=Derivative(Y, t)

Python] rrr=(rr*F).subs({W:WW})

Python] sol=dsolve(Y_prime-rrr, Y,hint=’best’)

Python] pprint(sol[0].rhs/F)

/ / 2

/ | b *t

/ | 2 W*b - ----

/ | -2*b*WW(t) b *t 2

\/ 2 * / C1 + | e *e dt *e

/ |

\/ /

where the constant C1 in the last result is x2 by initial condition X0 = x. Sympy’s dsolve() gives
two solution of ODE and the second one is taken since it is positive. This is also implemented in
PyS3 DE and named as reduced2() function.

3 Web-based Computing Environment

Using Python interactively is not too difficult in desktop application environment by the help of
Idle, IPython or TEXmacs. But there are two two potential barriers to run them remotely:

i. Space and time limit: such applications are not available to users outside the environment
(campus or laboratory) which the applications are installed;

ii. budget limit: proprietary softwares might avail remote solution for web computation but they
are too expensive to afford for everyone.

Modern internet technology and contributions from volunteers make Python remote program-
ming possible and the field is developing rapidly. Sage is a standard example and comes with
all-in-one modules it needs. After downloading and installing source by simple “make” procedure,
Sage can run right away. And a twisted implement for web service, called notebook(), also comes
with Sage. Sage/Python codes can run remotely by this interface as well as Mathematica does.
Sage does not contain PyS3 DE library; we have to copy it into Sage/Python third-party libraries
direcory before using. Working within Sage is the same as working within a desktop environment.
Sage also avails a more refined environment (mathematical-readable syntax, mathematical func-
tions and high-quality LATEXbased publishing system, etc.) than native Python environment does.
The picture in the following page shows the use of PyS3 DE within Sage’s notebook() and through
internet.

Although the Sage Notebook web interface brings more flexible computing environment than
desktop application does, it is necessary for us to adjust traditional user custom working in desk-
top environment. Directly displayingthe visualization output after computing may not work well
through Sage’s notebook(); instead, visualization output would be auto-displayed on web browser
while it was saved. notebook() interface has also been implemented by last IPython release which
also provides a light-weight web-based Python computing application than Sage does.

96 Chu-Ching Huang

Figure 1: Sage Web interface, notebook(), runs on Firefox

4 Conclusion

The focus of our research was to develop a computer package for solving SDEs. To accomplish
our objective we investigated the use of computer scripting language, Python and its packages,
which allows us to formulate mathematical stuff and provides high-performance functionality for
computation. Now the library for SDE, PyS3 DE, includes symbolic solvers, numerical schemes and
visualization tools. All of them can run on both traditional desktop and web environments.

On the other hand, for the purpose of user interface enhancement, we also introduce a scientific
publishing system, TEXmacs, and integrated CAS, Sage, into environment we study. Not only
can we work more friendly with TEX/LATEX via TEXmacs as its front-end interface, but its plugin
also makes it capable of building flexible Python computing platform with interactivity. Sage is
introduced to establish and manage scalable Python computing system through internet which
could actually overcome the barriers of budget limit and space-time restriction.

All library and tools we developed may be hosted on mobile device, CDROM or USB flash
drive, with pre-installed bootable and self-configuring Linux system. The benefits from such kind
of live system include:

• usable on any recent desktop or laptop;

• usable in computer labs as machines rebooted into computing environment and continuing
last work;

• support for use to set-up heterogeneous working environment;

• enable to try software on new hardware to reliable test and compatibility;

• extensible: replace buggy package, renew last module or add new package without a long
re-installation.

PyS3 DE and Live system (for 32bit and 64bit Intel-CPU clone set) are released in open source
licence and could be downloaded from our official site [diffusion].

Acknowledgments.
This article is supported by 9th TPSOA (MECO-TECO project approved by NSC Taiwan)

and Chang-Gung University, Taiwan.

Python Solver for Stochastic Differential Equations 97

References

[1] Cobb, Loren, Stochastic Differential Equations for the Social Sciences, Mathematical Frontier
of the Social and Policy Sciences, Cobb and Thraill eds.,Westview Press, 1981.

[2] Wright, Swell. The distribution of Gene Frequencies under Irreversible Mutation. Proc. Nat’l.
Acad. Sci., 24, p. 253-259, 1938.

[3] Øksendal Bernt, Stochastic Differential Equations, An Introduction with Applications, 6th
Ed., Springer-Verlag, 2007.

[4] Gard T.C., Introduction to Stochastic Differential Equation, Dekker, 1988.

[5] Klebaner Fima C, Introduction to Stochastic Calculus with Applications, 2nd Ed., Imperial
College Press, 2004.

[6] Eröcal, Burçin and Stein, W., The Sage Project: Unified Free Mathematical Software to
create a Viable Alternative to Magma, Maple, Mathematica and Matlab, In Komei Fukuda,
Joris van der Hoeven, Michael Joswig, and Nobuki Takayama (ed.), ICMS 2010: Proceedings
of the Third International Congress on Mathematical Software. Springer, Lecture Notes in
Computer Science, volume 6327, p. 12-27, 2010.

[7] Langtangen, Hans Petter, Python Scripting for Computational Science 3rd Ed., Springer, 2009.

[8] Oliphant, Travis E., Python for Scientific Computing, Computing in Science and Engineering,
May/June, p. 10-21, 2007.

[9] S. Cyganowski, P.E. Kloeden and J. Ombach, From Elementary Probability to Stochastic DEs
with MAPLE, Springer-Verlag, Heidelberg, 2001.

[10] W.S. Kendall, Computer algebra and stochastic calculus, Notices Amer. Math. Soc. 37 (1990),
1254-1256.

[11] William A. Stein et al. Sage Mathematics Software (Version 4.7.2), The Sage Development
Team, 2011, http://www.sagemath.org

[12] PyS3 DE and Live System: http://diffusion.cgu.edu.tw/ftp

