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Abstract

We prove the existence and uniqueness of the classical solutions for some general
Monge-Ampeére type equations.
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1 Introduction

Suppose that 2 is a domain in Euclidean n-space R™. Let £ be uniformly convex with
uniform radius R > 0 and f = f(x) a positive function on € such that

fo:=1inf f > 0. (1.1)
Q

In this paper, we consider the Dirichlet problem for the Monge-Ampere type equation

(1.2)

Flu] :=det(D?*u — A(Du)) = f, inQ,
w = 0, on JdN

where A : R — R™*"™ is smooth. The operator F' in (1.2) is elliptic with respect to u
whenever

D?u — A(Du) > 0. (1.3)

Let ¢ € C?(Q) be a uniformly convex function satisfying

det D29 = 1, in Q,
{ ¢ = 0, on ON. (1.4)
The uniform convexity of ¢ ensures that there is a constant p > 0 such that
D%*¢ > pl, in Q, (1.5)

(see Gilbarg-Trudinger [2]), where I is the n x n identity matrix. Set
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2 n
Kp:==||IflI% (1.6)
p
and
=Ky ¢. (1.7)
Then we have
D > 2|| f|5T. (1.8)

This type of the equation F[u] = f in (1.2) is connected to optimal transportation and
studied by many authors. For the matrix A, we assume that

D) — A(DY) > sol, (1.9)
for some constant sg > 0 and
Y Aij, (p)nk] < eolp[*Inl1, (1.10)
k=1
for all p, n € R, where ¢ > 1 and ¢ is a positive constant satifying
0 < o < 272D (%) (K;R)™, (1.11)
as well as
Y A P)mene 2 0, (1.12)
0,4,k =1

for all p,n € R". It is equivalent to that the function Y A;;(p) is convex. Instead of the
ij=1

assumption (1.11), Liu-Trudinger-Wang [5] made more assumptions on the domain on .

Moreover, from (1.11), we have for £ = (£1,&2, - ,&,) € R™,

>~ (45(2Dw) — 4(DV) ) €&, < €7 (colo Dyl [ DI T)¢
4.7
< 20 2 [Dy [ ¢f?

< IFI T
where 0 = o(x) € [0, 1]. That is
A@2DY) = A(DY) < [|fIIL"T- (1.13)

Hence, by (1.9) and (1.13), we have
F[2y] > det (D — A(Dy)) + det (D%p — (A(2Dy) — A(Dz/;)))
> F[] + [ fllo- (1.14)

Given a € (0,1), let .#,(Q) and X be defined by
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My () = {v € C**(Q) : D*v — A(Dv) > sI for some s > 0} (1.15)
and
X = {v € My(Q) : Flv] = 0F[¢] for some constant
o€0,1], v="0on aQ} (1.16)
where
_ Flu
Flu] == o) 1. (1.17)

Then X # () since ¢ € X. For each v € X, from (1.14),

Flo] < f(z) + o F[y] < F[2¢]. (1.18)

In conjunction with applications to optimal transportation, the equation (1.2) in general
form is

Flu] := det (D*u — A(z, Du)) = f(z,u, Du) (1.19)

which comes from
det DTy, = ¢(z,u, Du) >0

where the mapping T, : 2 — R" is given by
Tu(-) =Y (-, Du("))
for some C! vector field Y : Q x R x R® — R"™ with
|det DT, | = ¥(x,u, Du). (1.20)
To write (1.20) in the form (1.19), we assume
detY, #0 (1.21)
and obtain the elliptic solution of the equation (1.19) with
A(z,p) = =Y, 'Y,. (1.22)
When Y is generated by a cost function ¢ : R™ x R™ — R, satisfying

(1.23) gives the optimal transportation equation

Flu] = det (D2u — Dg,c(:r7 Y (z, Du))) _ Y@ Dy (1.24)

| det Yy, (z, Du)|’

Here
Coy(,Y (x,p) =Y, ' (,p)

and
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Coe (2, Y (2,p)) = —Yp_l(x,p)YI(m,p). (1.25)

Ma-Trudinger-Wang [6] showed that the classical solution of (1.19) exits for the second
boundary value problem. In this paper, we shall show that the solution of the Dirichlet
problem (1.2) exists uniquely under the assumptions (1.9)-(1.12).

In section 2, we provide a comparison principle for the operator F[u] in general form
and establish a priori estimates of functions in X and their first and second derivatives in
supremum norm. A priori estimates of C%® norms for functions in X are then obtained
by Theorem 17.26 of Gilbarg-Trudinger [2]. Using the method of continuity, the Dirichlet
problem (1.2) admits a solution u in C%*(0).

2 Global a priori estimates for second derivatives

In this section, we establish the supremum of functions in X and their derivatives in Q.
Then by the method of continuity we are able to obtain the existence of solutions. To find
those a priori estimates, the following comparison principle for the operator F[u] plays a
crucial role. The proof is suggested by Neil Trudinger.

Theorem 2.1. Assume the matrix A = A(x, z,p) satisfies

{8/117 (z, 2, p)}

>0
0z

where A = [A;j]. Let Flu] = det(D*u — A(z,u, Du)). Suppose the matrices D*u —
A(z,u, Du) and Div — A(z,v, Dv) are positive definite. If Flu] > Flv] and u < v on
09, then u < v in (.

Proof. Let Gu] := logF[u] = fog det(D?*u — A(z,u, Du)), and

W =W (u) := D*u — A(z,u, Du) > 0,

G .= 8?/;; where W = [W;;].
Then [G¥] = W~!. By the fact that G is concave on the set of all positive matrices (see

Gilbarg-Trudinger [2]), we have

0 < G[u] - G[v]
< GYMu] (Diju — Ayj(w,u, Du) = Dijv + Aij(,v, Dv))
=G [u] Djj(u—v) — G[u] (Asj(z,u, Du) — Ajj(z, v, Dv)).

Since [G¥] = W~! > 0, by the weak maximum principle, we have

u—wv <0, in Q.
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Now we are at the position of (1.18) that for all v € X,
Flo] < |[fllee + Fl¢], in Q
and v = 0 = 1 on 0. By Theorem 2.1, the comparison principle, we have
2¢) <v <0, in Q
which gives
sup [v] < 2K([¢]|co, for all v € X. (2.1)
Q
The convexity of both ¢ and v implies
sgp |Dv| < 2K sgp |Do| <2K;R, forallveX. (2.2)

To establish the supremum bound of second order derivatives estimates, we need the
following inequalities. From (1.10) and (1.11),

ZAij,pk (DU)DW] < eo|Dv||Dy|T
k=1

IN

c0(2KR) (KfR)I
< |IFIXmT (2.3)

A

and

D — [Ayj p, (Dv) Dyp] > D2 — || |21
> || flImT. (2.4)

Theorem 2.2. For each v € X, we have
sup | D%v| < C, (2.5)
Q
where C' is a positive constant depending on sup |D?v|, Q, A, sup |Dv|.
o0 Q

Proof. Let G(W) := Log det W, for symmetric positive definite matrix W. Then

oG(W ii
Gij(W) = av(vu) =W (2.6)
ij
and
oG(W) Ja—,
Giipe(W) i= ———— = —W"W'*, 2.7
j,kl( ) 8W2J 8Wk€ ( )

where [W¥] = W~!. G is concave on the set {W € S"*" : W > 0}.
Forv e X,
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Then we have

where

and

_ PPG(W)
= "g7

< Wiij(Wij),

= WM D (W) Dy (Wie) + WD, (W)

by (2.7). Moreover,

Dy Wij = Dy (Dijv - Aij(D”))
= Dij(Dyyv) = Aij p, (DV) D (Do v) = Aij pype DinvDiesv.

Hence, we have by (2.7)
Dy Wij < Dij(Danv) — Agjp, (Do) Dy (Dyyv).
(2.12) and (2.13) ensure that
97y < WY Dij(Dyv) = WY Ayj i, Di(Doyav).
Define a linear elliptic operator by
L(-) := WY Dy(-) = W Ay, (D) Dic ().

Then

L(D’Y'YU) ?'yfy

0

AVARLY,

where (' is a positive number depending on f. Moreover,

L(U) = Wij (W” + A”(D'U)) — VViinjm,C (Dv)Dkv
=n+ Wiinj (DU) — Aijpy (D’U)Dk'l)
2 n — 029

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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where 7 is the trace of W~! and Cj is a positive number depending on A4, A,, , and sup | Dv|.
Q

For the function ¢ defined on (1.7),

L(4) = WY Dyjih — Wij Aij p, (Dv) Dyt
= tr (W [ Digo — Aizp (DV)Dr0] )
> I (2.17)

Choose k1 = Cy1/n and ky = C1Ca]|f||=/" to obtain
L(Dyyv + k1v + katp) > 0. (2.18)
By the weak maximum principle, we have
sgp (Dwv + kv + k‘gz/)) < sgg) (DWU + kjv + k;gw) (2.19)
which implies
Slép D,v<C (2.20)

where C' > 0 depending on sup |D?v|, A, f and 2. On the other hand, for each unit vector
o0
Vs

D, v = (Wi 4 Aij(Dv))viv;
> Aij(Dv)viv;
> _C

where C' > 0 depends on A, f and 2. Then there holds

sup |D%*v| < C
Q
where C' > 0 depends on sup |D+v|, 4, f and Q. O
a0

Next, we want to estimate sup | D?u|. The main idea of the proof follows from Trudinger
o0

[7].

Theorem 2.3. For each v € X,
sup |D?[v < C (2.21)
a0

where C' > 0 depends on 02 and f and A.

Proof. Take any xy € 02. Without loss of generality, we may suppose that xg is the
origin and the z,, axis points the inward normal direction. Let w be a function defined in a
neighborhood of the origin in R"~! such that if 2’ = (21,22, -+ ,2,_1) then (z/,w(z’)) € 9.
That is, if x,, = w(x’), then (2’,z,) € 9Q. Then it is clear that

w(0) =0 and Dw(0) = 0. (2.22)
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Since 00 € C3, we may assume w € C2 and
w(2') = Quprars + O(|2']*) in a neighborhood of 0, (2.23)
1
where 1 < o, <n—1, Qup := §Da5w(0). Following the proof in Trudinger[7], p.38, there
holds

|Dopsv(0)] < C, (2.24)

for all a, 8, 1 < a, 8 <n—1, where C' > 0 depending on 912, f and the matrix A.
Next, for 8 =1,2,3,--- ;n — 1, from the definition of G(v), we differentiate G(v) with
respect to xx to obtain

G (’U)Dij (Dk’l)) = ng + GY (’U)Aijszg(Dk’U) (2.25)
iy Ai; (D
where [GY] := W™, and A;j,, = 857(0) Define a new function by
Pe
v? = Dgv+wsDpv, B=1,2,---,n—1 (2.26)

and a linear operator

L() := G¥(0)Dyj(-) = G (v) Aijp, (D) D). (2.27)
Hence for 5 =1,2,--- ;n — 1, we have

L’U’g = Gij (U)Dij’l}ﬁ — Gij (U)Aijyl)z (DU)D@’U’g. (228)

The operator L is uniformly elliptic since the matrix W' is uniformly positive. The
first term of the right hand side in (2.28) is
GijDijUB = 975 + Giinj,peDg(ng)
+ wps (ng + Giinjme Dg(Dn”U))
+ (269wiDsn0) + (wsig Dav). (2.29)
The third term in (2.29) is
QGUWBiDjnU = QWBiGijon + 2Gijw,3iAjn
= 2wgn + 2GYwgi Aj. (2.30)
The second term of the right hand side in (2.29) becomes
GiinLng’Uﬁ = GijA,’j’m (DgB’U + Woe,BDnU + wBDg(DnU)). (231)
To summarize, we have derived
Lv? = 975 +wgg?, + 2wgy, + 2GiijiAjn + wgijDpv. (2.32)
Since 7 := tr[GY] > n(det W)Y/ = n/(g%)"/" we finally obtain
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L’ < CT, (2.33)
where C'= C'(9Q, f,sup|Dv]|). Near the origin, we set
Q
1 1 1
= Qamfiéam alm — In —a? 2.34
&(x) 4( 5 >x:c x +8Rx” (2.34)
where the sum is taken over 1 < a,m < n — 1. Then
Dije = 2 (Qum = 6 ) Gradym) + —=65m3;
1] - 2 am 2R am oY ym 4R mYjin:.
Df—1 Q —i(5 (0aTm + OemTa) — 0 —l—iéx
14 —4 am °R am Lalm Imd o In AR Indn-
By calculation,
LE = GYD;;6 — GY Ay, Dok
1 1 1 g
= §Gam (Qam - 2}%504m> + 2 <&R + kl) G"" — GZJAij,pzDég
where the sum is taken over 1 < a, m <n—1, and 1 <14,j,¢ <n. Hence,
L& =G D¢ — G Ajjp, Dok
1 1 1
= 7Gam Qam - 760(771 2 — k Gnn
2 < 2R ) + (SR * 1)
1 1
+ gG ]Aij,pa (Qam - 2R5am> Tm
y y 1
-G JAijypn +2G JAij,pn <8R + kl) T
1 1 .
> _mny T nn ’L]Ai' el 9.
,4R(9 G"™) SRG + G A, — C'e (2.35)
where the sum is taken over 1 < a,m <n —1, and 1 <¢,7 < n. Hence for small € > 0,
LE> T(1/8R — 02 KyR") — C'e
> >\0<7 — C/€
1
> ShT (2.36)
for some constant A\g > 0. On 992 N B.(0),
Tn = Qamxaxm + O(|xl|3)7
we have
L6 = 2 Quttatn — o' + O([") < —LJa'? + O(o'?)
4 8R ~ 8R
-1
< —la'?, (2.37)

2R
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for all small € > 0. If z € dB.(0) N, then

2

e? = |2/ + 22, and z, > w(|2’|).

If € > 0 is small then

_;3 /_i /12 1 2 13
f(x)—4Rff| 8Rx| +716Rxn+0(lx|)
~1
< ﬁ|x’|27 (2.38)

2
for 2|2'|? > z2. On the other case, 2|2'|* < 22, we have —z,, < \@5. Thus for small
e>0,

E(z) < %52 — \/gs

< —\ig, (2.39)

for some Ay > 0. Taking into accounts (2.37)—(2.39) and the maximum principle, {(z) <
v(z) in B.(0) N Q for some small ¢ > 0. Since £(0) = v(0), we obtain a bound for D.,v(0)
depending 99 and f. This proves Theorem 2.3. O

We are now able to apply Theorem 17.8, 17.16, 17.26 of Gilbarg-Trudinger [2] and obtain
the following theorem.
Theorem 2.4. Let 90 € C*. Then the Dirichlet problem (1.2) admit a classical solution
u € C?%(Q).
Remark 2.5.

(a) If c(z,y) = —%\/1+h2\$—y|2 , then
A(w,p) = =h/1 = [p2(I —p®p).

A satisfies (1.12) whenever pLn and it does satisfy (A3) condition of [6, 10], where
(43) > Aipp&i&mn = colé*Inl”,
i,jk,0=1

for some positive constant co. The above condition is called (A3w) if co = 0.

(b) Theorem 2.2 and Theorem 2.3 could hold if the assumption (1.12) is replaced by (ASw)
condition.

(¢) Liu-Trudinger [5] also proved the interior second derivative estimates of Pogorelov type
for general Monge-Ampére type equations when the matriz A only satisfies the weaker
condition (A3w).
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