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Abstract

We prove the existence and uniqueness of the classical solutions for some general
Monge-Ampère type equations.
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1 Introduction

Suppose that Ω is a domain in Euclidean n-space Rn. Let Ω be uniformly convex with
uniform radius R > 0 and f = f(x) a positive function on Ω such that

f0 := inf
Ω
f > 0. (1.1)

In this paper, we consider the Dirichlet problem for the Monge-Ampère type equation{
F [u] := det(D2u−A(Du)) = f, in Ω,

u = 0, on ∂Ω
(1.2)

where A : Rn → Rn×n is smooth. The operator F in (1.2) is elliptic with respect to u
whenever

D2u−A(Du) > 0. (1.3)

Let φ ∈ C2(Ω) be a uniformly convex function satisfying{
detD2φ = 1, in Ω,

φ = 0, on ∂Ω.
(1.4)

The uniform convexity of φ ensures that there is a constant ρ > 0 such that

D2φ ≥ ρI, in Ω, (1.5)

(see Gilbarg-Trudinger [2]), where I is the n× n identity matrix. Set
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Kf :=
2

ρ
‖f‖1/n∞ (1.6)

and

ψ := Kf φ. (1.7)

Then we have

D2ψ ≥ 2‖f‖1/n∞ I. (1.8)

This type of the equation F [u] = f in (1.2) is connected to optimal transportation and
studied by many authors. For the matrix A, we assume that

D2ψ −A(Dψ) ≥ s0I, (1.9)

for some constant s0 > 0 and [
n∑
k=1

Aij,pk(p)ηk

]
≤ ε0|p|`|η|I, (1.10)

for all p, η ∈ Rn, where ` ≥ 1 and ε0 is a positive constant satifying

0 < ε0 < 2−2(`+1)
( ρ
R

)
(KfR)−`, (1.11)

as well as

n∑
i,j,k,`=1

Aij,pkp`(p)ηkη` ≥ 0, (1.12)

for all p, η ∈ Rn. It is equivalent to that the function
n∑

i,j=1

Aij(p) is convex. Instead of the

assumption (1.11), Liu-Trudinger-Wang [5] made more assumptions on the domain on Ω.
Moreover, from (1.11), we have for ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn,

∑
i,j

(
Aij(2Dψ)−Aij(Dψ)

)
ξiξj ≤ ξT

(
ε0|σDψ|`|Dψ|I

)
ξ

≤ ε0 2` |Dψ|`+1| ξ|2

≤ ‖f‖1/n∞ I

where σ = σ(x) ∈ [0, 1]. That is

A(2Dψ)−A(Dψ) ≤ ‖f‖1/n∞ I. (1.13)

Hence, by (1.9) and (1.13), we have

F [2ψ] ≥ det
(
D2ψ −A(Dψ)

)
+ det

(
D2ψ −

(
A(2Dψ)−A(Dψ)

))
≥ F [ψ] + ‖f‖∞. (1.14)

Given α ∈ (0, 1), let Mα(Ω) and X be defined by
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Mα(Ω) :=
{
v ∈ C2,α(Ω) : D2v −A(Dv) > sI for some s > 0

}
(1.15)

and

X :=
{
v ∈Mα(Ω) : F[v] = σF[ψ] for some constant

σ ∈ [0, 1], v = 0 on ∂Ω
}

(1.16)

where

F[u] :=
F [u]

f(x)
− 1. (1.17)

Then X 6= ∅ since ψ ∈ X. For each v ∈ X, from (1.14),

F [v] ≤ f(x) + σF [ψ] ≤ F [2ψ]. (1.18)

In conjunction with applications to optimal transportation, the equation (1.2) in general
form is

F [u] := det
(
D2u−A(x,Du)

)
= f(x, u,Du) (1.19)

which comes from
detDTu = ψ(x, u,Du) > 0

where the mapping Tu : Ω→ Rn is given by

Tu(·) = Y (·, Du(·))

for some C1 vector field Y : Ω× R× Rn → Rn with

|detDTu| = ψ(x, u,Du). (1.20)

To write (1.20) in the form (1.19), we assume

detYp 6= 0 (1.21)

and obtain the elliptic solution of the equation (1.19) with

A(x, p) = −Y −1
p Yx. (1.22)

When Y is generated by a cost function c : Rn × Rn → R, satisfying

cx
(
·, Y (·, p)

)
= p, (1.23)

(1.23) gives the optimal transportation equation

F [u] = det
(
D2u−D2

xc
(
x, Y (x,Du)

))
=

ψ(x, u,Du)

|detYp(x,Du)|
. (1.24)

Here
cx,y(x, Y (x, p)) = Y −1

p (x, p)

and
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cxx(x, Y (x, p)) = −Y −1
p (x, p)Yx(x, p). (1.25)

Ma-Trudinger-Wang [6] showed that the classical solution of (1.19) exits for the second
boundary value problem. In this paper, we shall show that the solution of the Dirichlet
problem (1.2) exists uniquely under the assumptions (1.9)-(1.12).

In section 2, we provide a comparison principle for the operator F [u] in general form
and establish a priori estimates of functions in X and their first and second derivatives in
supremum norm. A priori estimates of C2,α norms for functions in X are then obtained
by Theorem 17.26 of Gilbarg-Trudinger [2]. Using the method of continuity, the Dirichlet
problem (1.2) admits a solution u in C2,α(Ω).

2 Global a priori estimates for second derivatives

In this section, we establish the supremum of functions in X and their derivatives in Ω.
Then by the method of continuity we are able to obtain the existence of solutions. To find
those a priori estimates, the following comparison principle for the operator F [u] plays a
crucial role. The proof is suggested by Neil Trudinger.

Theorem 2.1. Assume the matrix A = A(x, z, p) satisfies[
∂Aij(x, z, p)

∂z

]
≥ 0

where A = [Aij ]. Let F [u] = det(D2u − A(x, u,Du)). Suppose the matrices D2u −
A(x, u,Du) and D2v − A(x, v,Dv) are positive definite. If F [u] ≥ F [v] and u ≤ v on
∂Ω, then u ≤ v in Ω.

Proof. Let G[u] := `ogF [u] = `og det(D2u−A(x, u,Du)), and

W = W (u) := D2u−A(x, u,Du) > 0,

Gij :=
∂G

∂Wij
where W = [Wij ].

Then [Gij ] = W−1. By the fact that G is concave on the set of all positive matrices (see
Gilbarg-Trudinger [2]), we have

0 ≤ G[u]−G[v]

≤ Gij [u]
(
Diju−Aij(x, u,Du)−Dijv +Aij(x, v,Dv)

)
= Gij [u]Dij(u− v)−Gij [u]

(
Aij(x, u,Du)−Aij(x, v,Dv)

)
.

Since [Gij ] = W−1 > 0, by the weak maximum principle, we have

u− v ≤ 0, in Ω.
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Now we are at the position of (1.18) that for all v ∈ X,

F [v] ≤ ‖f‖∞ + F [ψ], in Ω

and v = 0 = ψ on ∂Ω. By Theorem 2.1, the comparison principle, we have

2ψ ≤ v ≤ 0, in Ω

which gives

sup
Ω

|v| ≤ 2Kf‖φ‖∞, for all v ∈ X. (2.1)

The convexity of both ψ and v implies

sup
Ω
|Dv| ≤ 2Kf sup

Ω
|Dφ| ≤ 2KfR, for all v ∈ X. (2.2)

To establish the supremum bound of second order derivatives estimates, we need the
following inequalities. From (1.10) and (1.11),

[
n∑
k=1

Aij,pk(Dv)Dkψ

]
≤ ε0|Dv|`|Dψ|I

≤ ε0(2KfR)`(KfR)I

≤ ‖f‖1/n∞ I (2.3)

and

D2ψ − [Aij,pk(Dv)Dkψ] ≥ D2ψ − ‖f‖1/n∞ I

≥ ‖f‖1/n∞ I. (2.4)

Theorem 2.2. For each v ∈ X, we have

sup
Ω
|D2v| ≤ C, (2.5)

where C is a positive constant depending on sup
∂Ω
|D2v|, Ω, A, sup

Ω
|Dv|.

Proof. Let G(W ) := `og detW , for symmetric positive definite matrix W . Then

Gij(W ) :=
∂G(W )

∂Wij
= W ij (2.6)

and

Gij,k`(W ) :=
∂G(W )

∂Wij∂Wk`
= −W ikW j`, (2.7)

where [W ij ] = W−1. G is concave on the set {W ∈ Sn×n : W > 0}.
For v ∈ X,
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W (v) := D2v −A(Dv) > 0. (2.8)

Then we have

G(W ) = gσ (2.9)

where

gσ :=

(
1− σ + σ

F [ψ]

f(x)

)
f(x). (2.10)

For each unit vector γ, we have

gσγ =
∂G(W )

∂γ
= W ijDγ(Wij) (2.11)

and

gσγγ =
∂2G(W )

∂γ2
= W ij,k`Dγ(Wij)Dγ(Wk`) +W ijDγγ(Wij)

≤W ijDγγ(Wij), (2.12)

by (2.7). Moreover,

DγγWij = Dγγ

(
Dijv −Aij(Dv)

)
= Dij(Dγγv)−Aij,pk(Dv)Dk(Dγγv)−Aij,pkp`DkγvD`γv.

Hence, we have by (2.7)

DγγWij ≤ Dij(Dγγv)−Aij,pk(Dv)Dk(Dγγv). (2.13)

(2.12) and (2.13) ensure that

gσγγ ≤W ijDij(Dγγv)−W ijAij,pkDk(Dγγv). (2.14)

Define a linear elliptic operator by

L(·) := W ijDij(·)−W ijAij,pk(Dv)Dk(·).

Then

L(Dγγv) ≥ gσγγ
≥ −C1 (2.15)

where C1 is a positive number depending on f . Moreover,

L(v) = W ij
(
Wij +Aij(Dv)

)
−W ijAij,pk(Dv)Dkv

= n+W ijAij(Dv)−Aij,pk(Dv)Dkv

≥ n− C2T (2.16)



On Some General Monge-Ampère Type Equations 69

where T is the trace of W−1 and C2 is a positive number depending on A, Apk , and sup
Ω
|Dv|.

For the function ψ defined on (1.7),

L(ψ) = W ijDijψ −WijAij,pk(Dv)Dkψ

= tr
(
W−1

[
Dijψ −Aij,pk(Dv)Dkψ

])
≥ ‖f‖1/n∞ T . (2.17)

Choose k1 = C1/n and k2 = C1C2‖f‖−1/n
∞ to obtain

L(Dγγv + k1v + k2ψ) ≥ 0. (2.18)

By the weak maximum principle, we have

sup
Ω

(
Dγγv + k1v + k2ψ

)
≤ sup

∂Ω

(
Dγγv + k1v + k2ψ

)
(2.19)

which implies

sup
Ω
Dγγv ≤ C (2.20)

where C > 0 depending on sup
∂Ω
|D2v|, A, f and Ω. On the other hand, for each unit vector

γ,

Dγγv = (Wij +Aij(Dv))γiγj

≥ Aij(Dv)γiγj

≥ −C

where C > 0 depends on A, f and Ω. Then there holds

sup
Ω
|D2v| ≤ C

where C > 0 depends on sup
∂Ω
|Dγγv|, A, f and Ω.

Next, we want to estimate sup
∂Ω
|D2u|. The main idea of the proof follows from Trudinger

[7].

Theorem 2.3. For each v ∈ X,

sup
∂Ω
|D2|v ≤ C (2.21)

where C > 0 depends on ∂Ω and f and A.

Proof. Take any x0 ∈ ∂Ω. Without loss of generality, we may suppose that x0 is the
origin and the xn axis points the inward normal direction. Let ω be a function defined in a
neighborhood of the origin in Rn−1 such that if x′ = (x1, x2, · · · , xn−1) then (x′, ω(x′)) ∈ ∂Ω.
That is, if xn = ω(x′), then (x′, xn) ∈ ∂Ω. Then it is clear that

ω(0) = 0 and Dω(0) = 0. (2.22)
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Since ∂Ω ∈ C3, we may assume ω ∈ C3 and

ω(x′) = Ωαβxαxβ +O(|x′|3) in a neighborhood of 0, (2.23)

where 1 ≤ α, β ≤ n− 1, Ωαβ :=
1

2
Dαβω(0). Following the proof in Trudinger[7], p.38, there

holds

|Dαβv(0)| ≤ C, (2.24)

for all α, β, 1 ≤ α, β ≤ n− 1, where C > 0 depending on ∂Ω, f and the matrix A.
Next, for β = 1, 2, 3, · · · , n − 1, from the definition of G(v), we differentiate G(v) with

respect to xk to obtain

Gij(v)Dij(Dkv) = gσk +Gij(v)Aij,p`D`(Dkv) (2.25)

where [Gij ] := W−1, and Aij,p` :=
∂Aij(Dv)

∂p`
. Define a new function by

vβ := Dβv + ωβDnv, β = 1, 2, · · · , n− 1 (2.26)

and a linear operator

L(·) := Gij(v)Dij(·)−Gij(v)Aij,p`(Dv)D`(·). (2.27)

Hence for β = 1, 2, · · · , n− 1, we have

Lvβ = Gij(v)Dijv
β −Gij(v)Aij,p`(Dv)D`v

β . (2.28)

The operator L is uniformly elliptic since the matrix W−1 is uniformly positive. The
first term of the right hand side in (2.28) is

GijDijv
β = gσβ +GijAij,p`D`(Dβv)

+ ωβ

(
gσn +GijAij,p`D`(Dnv)

)
+
(

2GijωβiDjnv
)

+
(
ωβijDnv

)
. (2.29)

The third term in (2.29) is

2GijωβiDjnv = 2ωβiG
ijWjn + 2GijωβiAjn

= 2ωβn + 2GijωβiAjn. (2.30)

The second term of the right hand side in (2.29) becomes

GijAij,p`D`v
β = GijAij,p`(D`βv + ωαβDnv + ωβD`(Dnv)). (2.31)

To summarize, we have derived

Lvβ = gσβ + ωβgσn + 2ωβn + 2GijωβiAjn + ωβijDnv. (2.32)

Since T := tr[Gij ] ≥ n(detW−1)1/n = n/(gσ)1/n, we finally obtain



On Some General Monge-Ampère Type Equations 71

|Lvβ | ≤ CT , (2.33)

where C = C(∂Ω, f, sup
Ω
|Dv|). Near the origin, we set

ξ(x) :=
1

4

(
Ωαm −

1

2R
δαm

)
xαxm − xn +

1

8R
x2
n (2.34)

where the sum is taken over 1 ≤ α,m ≤ n− 1. Then

Dijξ =
1

2

(
Ωαm −

1

2R
δαm

)
(δiαδjm) +

1

4R
δinδjn.

D`ξ =
1

4

(
Ωαm −

1

2R
δαm

)
(δ`αxm + δ`mxα)− δ`n +

1

4R
δ`nxn.

By calculation,

Lξ = GijDijξ −GijAij,p`D`ξ

=
1

2
Gαm

(
Ωαm −

1

2R
δαm

)
+ 2

(
1

8R
+ k1

)
Gnn −GijAij,p`D`ξ

where the sum is taken over 1 ≤ α, m ≤ n− 1, and 1 ≤ i, j, ` ≤ n. Hence,

Lξ = GijDijξ −GijAij,p`D`ξ

=
1

2
Gαm

(
Ωαm −

1

2R
δαm

)
+ 2

(
1

8R
+ k1

)
Gnn

+
1

2
GijAij,pα

(
Ωαm −

1

2R
δαm

)
xm

−GijAij,pn + 2GijAij,pn

(
1

8R
+ k1

)
xn

≥ 1

4R
(T −Gnn)− 1

8R
Gnn +GijAij,pn − C ′ε (2.35)

where the sum is taken over 1 ≤ α,m ≤ n− 1, and 1 ≤ i, j ≤ n. Hence for small ε > 0,

Lξ ≥ T (1/8R− ε02`K`
fR

`)− C ′ε
≥ λ0T − C ′ε

≥ 1

2
λ0T (2.36)

for some constant λ0 > 0. On ∂Ω ∩Bε(0),

xn = Ωαmxαxm +O(|x′|3),

we have

Lξ =
−3

4
Ωαmxαxm −

1

8R
|x′|2 +O(|x′|3) ≤ −7

8R
|x′|2 +O(|x′|3)

≤ −1

2R
|x′|2, (2.37)
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for all small ε > 0. If x ∈ ∂Bε(0) ∩ Ω, then

ε2 = |x′|2 + x2
n, and xn ≥ ω(|x′|).

If ε > 0 is small then

ξ(x) =
−3

4R
|x′| − 1

8R
|x′|2 +

1

16R
x2
n +O(|x′|3)

≤ −1

2R
|x′|2, (2.38)

for 2|x′|2 ≥ x2
n. On the other case, 2|x′|2 < x2

n, we have −xn ≤ −
√

2

3
ε. Thus for small

ε > 0,

ξ(x) ≤ 1

8R
ε2 −

√
2

3
ε

≤ −λ1ε, (2.39)

for some λ1 > 0. Taking into accounts (2.37)−(2.39) and the maximum principle, ξ(x) ≤
v(x) in Bε(0) ∩ Ω for some small ε > 0. Since ξ(0) = v(0), we obtain a bound for Dγγv(0)
depending ∂Ω and f . This proves Theorem 2.3.

We are now able to apply Theorem 17.8, 17.16, 17.26 of Gilbarg-Trudinger [2] and obtain
the following theorem.

Theorem 2.4. Let ∂Ω ∈ C4. Then the Dirichlet problem (1.2) admit a classical solution
u ∈ C2,α(Ω).

Remark 2.5.

(a) If c(x, y) = − 1

h

√
1 + h2|x− y|2 , then

A(x, p) = −h
√

1− |p|2(I − p⊗ p).

A satisfies (1.12) whenever p⊥η and it does satisfy (A3) condition of [6, 10], where

(A3)

n∑
i,j,k,`=1

Aij,pkp`ξiξjηiηj ≥ c0|ξ|2|η|2,

for some positive constant c0. The above condition is called (A3w) if c0 = 0.

(b) Theorem 2.2 and Theorem 2.3 could hold if the assumption (1.12) is replaced by (A3w)
condition.

(c) Liu-Trudinger [5] also proved the interior second derivative estimates of Pogorelov type
for general Monge-Ampère type equations when the matrix A only satisfies the weaker
condition (A3w).
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[4] J.K. Liu, N.S. Trudinger, X.J. Wang, Interior C2,α regularity for potential functions in
optimal transportation , Comm. in Partial Differential Equations 35 (2010) 165-184.

[5] J.K. Liu and N.S. Trudinger, On Pogorelov estimates for Monge-Ampère type equations,
Discrete Cont. Dyn.-A 28 (2010), 1121-1135.

[6] X.N. Ma, N.S. Trudinger and X.J. Wang, Regularity of potential functions of the optimal
transportation problem, Arch. Ration. Mech. Anal. 177 (2005) 151-183.

[7] N.S. Trudinger, Lectures on Nonlinear Equations of Second Order, Lectures in Mathe-
matical Sciences, University of Tokyo, New Series Vol. 9, (1995).

[8] N.S. Trudinger, Recent developments in elliptic partial differential equations of Monge-
Ampère type, Proceedings on the International Congress of Mathematicians: Madrid,
August 22-30,2006 : invited lectures

[9] N.S. Trudinger and X.J. Wang, The Monge-Ampère equations and its geometric appli-
cations, Handbook of Geometric Analysis Vol. I (2008), International Press, 467-524.

[10] N.S. Trudinger and X.J. Wang, On the second boundary value problem of Monge-
Ampère type equations and optimal transportation, Annali della Scuola Normale Su-
periore di Pisa. Classe di scienze 8 (2009) 143-174

[11] J.Urbas, Mass Transfer Problems, University of Bonn 1998


