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Abstract

In this paper, we apply the Poincaré-Andronov-Hopf Bifurcation Theorem to two
fundamental systems: generalized Liénard system and generalized Gause type predator-
prey system, and derive a brief expression of the first Lyapunov coefficient x (see below).
As an example, we consider the system of the Chlorine Dioxide-Iodine-Malonic acid
reaction in the end of the paper. We use the expression we suggest to show that both
super- and sub-critical Hopf bifurcations may appear.
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1 Introduction

Hopf bifurcation is a phenomenon which describes that a limit cycle will appear about any
steady state which undergoes a transition from a stable to an unstable focus as some param-
eter varies [2]. There are two types of Hopf bifurcation. The one in which stable limit cycles
occur about an unstable focus is called the supercritical Hopf bifurcation, while the other
in which an unstable limit cycle occurs around a stable equilibrium is called the subcriti-
cal Hopf bifurcation. The subcritical case is always much more dramatic, and potentially
dangerous in engineering applications. The way to distinguish super- and sub-critical Hopf
bifurcation is the celebrated theorem named by Poincaré-Andronov-Hopf Bifurcation The-
orem. Examples of such phenomenon can be found in the work of Poincaré [8]. The first
specific study and formulation of a theorem was due to Andronov [1]. The work of Poincaré
and Andronov was concerned with two-dimensional vector fields, while the theorem due to
E. Hopf [3] is valid in n dimensions. For the sake of completeness, we state the theorem as
follows. Consider the one parameter planar autonomous system:

#'=G(Z,p), TeR peJCRY, (1)
which satisfies the following assumptions:

Al. G(0,p) = 0 for all values p near 0,

A2. DG(, ) = [ ggz; ‘583 ] with a(0) = 0 # o (0), 3(0) £ 0,
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Here, 0 € Jand G € C3(R2xR, R?). Define F(Z, 1) = G(Z, u)—DG(0, 1) = (f(Z, 1), 9(Z, 1)) .
Then the first Lyapunov coefficient of (1.1) is given by

166 = (foze + fogy + ooy + Gyyy + B foy(Foz + Fuy) — oy (9zz + Gyy)]
_5_1[fzxgazx - fyygyy] )|(670)~ (2)

Theorem 1.1 (Poincaré-Andronov-Hopf Bifurcation Theorem).

1. (Supercritical) If k < 0, then there is an orbitally asymptotically stable limit cycle for
|| sufficiently small.

2. (Subcritical) If k > 0, then 0 is locally asymptotically stable and there is an orbitally
unstable limit cycle for |p| sufficiently small.

In general, the computation of x is not easy and it seems no way to simplify the calcula-
tion. But, for generalized Liénard system and generalized Gause type predator-prey system,
it is possible to obtain a brief expression of x. (See Theorems 2 and 4.) This is our goal in
this paper.

The rest of this paper is organized as follows. In Section 2, we will apply the Poincaré-
Andronov-Hopf Bifurcation Theorem to the generalized Liénard and Gause type predator-
prey systems and get our main results. Then we consider the system of the Chlorine Dioxide-
Todine-Malonic acid reaction in Section 3 to show that our finding is applicable.

2 Main Results

Let us consider the following one parameter generalized Liénard system:

{ o' (t) = T(v(t), p) — H(u(t), p) (3)
v'(t) = =W (u(t), ) ’

where 0 € J C R and H, ¥,1II € C3(R x J,R) satisfy the following assumptions:

L1. H(0,u) = H'(0,0) =0 # %H’(0,0) for all u € J.
L2. U(0,u) =07 9(0,u) for all pe J.
L3. TI(0, ) =0 # II'(0, ) for all u € J.
L4. ¥(0,0)IT'(0,0) > 0.
Clearly, 0 is the only equilibrium of (3) and the Jacobian matrix of (3) at 0 is given by

_H/(Oa ) H/(Ov )
A(/J) = |: _\II/((),Z) 0 a ] .

The characteristic polynomial and eigenvalues of A(u) are given by A2+H' (0, ) A+’ (0, )T’ (0, 1)
and (—H’(O, () £ /H™2(0, 1) — 49’ (0, u)IT'(0, u)) /2, respectively. Hence 0 is stable if
H'(0, 1) > 0and 0 is unstable if H(0, 12) < 0. From (L1)-(L4), we have A(u) = 4% (0, )IT' (0, p) —
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H'?(0, ) > 0 if |u| < 1. This gives that 0 is a spiral focus (stable or unstable) for y near 0.
For convenience, we set

ap) = —%H’(O,u)» Bu) = % A(p)
for |u| < 1. Clearly, a(0) = 0 # &/(0) and 3(0) # 0.

Let’s now consider the following change of variables:

x 1 U U
=P (M) |: :| = [ a(pw)u+1 (0,u)v ]
[ Y } v T Bw

where

Then one has

& oozt By

e / 7 )
from which (3) can be reduced into e
MBSt ®
where
[ fiad ] < gy | T T ]

Now, we are in a position to state and prove our first result.

1" !
Theorem 2.1. If (L1)-(L3) hold then 16x = — W'(0,0) (%)

0.0
Proof. From (4), (6) and chain rule, we have

fola,y, 1) = H'(0, 1) — H'(u, p) + ) — a(p)II' (v, 1) /I(0, 1)
and
fy(@,y, 1) = B(R)(IT'(0, p) — I (v, ) /T (0, ).

Then a straightforward computation yields

foo(@,y, ) = —H" (u, p) + o ()T (v, 1) /T12(0, 1)

fay(@,y, 1) = a(p) BT (v, 1) /TI?(0, 1),

Fyy(@,y, 1) = B2 ()" (v, ) /TI?(0, o),

froa(@,y, 1) = —H" (u, pp) — ()11 (v, ) /T1%(0, ),

fray (@, y, 1) = = () BT (v, 1) /TI3(0, o),

fayy(@,y, 1) = —a(p) B2 ()T (v, ) /TI3(0, ),

Foyy (@, y, 1) = =B (@)1 (v, ) /T1°(0, ).
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On the other hand, since, by (6). g(x. . 1) = — 5./ (2., 1) = T5GH (V'(0, ) — U (o, ),

we have

9o (@, y, ) = —(a(p) fo +I1(0,0) (' (0, p1) — W' (u, n)))/B(1),
gy, y, 1) = —a(p) fy/B(1),
oo (2, y, 1) = — () fou — T(0,0)9" (u, 1))/ B(1),
Joy (@, y, 1) = —a(p) fay /B(1),  Gyy(z,y, 1) = —a(p) fyy / B(1),
Gaay (T, Y, 1) = =) fuay [ B(1)s  Gyyy (T, Y, 1) = =) fyyy/B()-
Notice that «(0) = 0 tells that foy = faoyy = foay = 9y = Gyy = Gyyy = Yoy = Yaay = 0 if

© = 0. As a consequence,

16k = —H'""(0,0) +

H"(0,0)TI' (0, 0)¥" (0, 0).
o 100 0.097(0.0)
Since 2a/(0) = —H'(0,0) = 0 and 432(0) = A(0) = 4¥'(0,0)IT'(0, 0), we obtain the desired
result. O

Observe that, from (L1) and (L2), there exists a ¢ > 0 such that H'(u,0) # 0and ¥(u,0) #
0 for all u € (=4, 9). Therefore, by Cauchy Mean Value Theorem, for any u € (—¢,6) — {0},
we have

H'(u,0)  H'(u,0)— H'(0,0) H"(£,0)

U(u,0)  ¥(u,0)—¥(0,0)  W(E0)° @)
for some & between 0 and u. On the other hand, one has by L’Hospital Rule
H'(u,0 H"(0,0
Ly \1/((11,0)) - \1/'((0,0)) =4 ®)
Note that W w0
¥(u,0) _ WD & )
u—0 &E—-0 U
The left hand side of (8) converges to (Ié/((ibo)))’ |u=0 while the first part of the right hand

side of (8) tends to (gi/((;bo)) )’|u=o if we let u — 0. Since & is always positive, (’é,&bo)) Y luco

and (pr,,/&bo)))’ lu=0 have the same sign if (}i’((;"’(?)))’ lu=o # 0. Combining this result with

Theorem 2.1, we have the following theorem.

Theorem 2.2. If (L1)-(L3) hold and (%)’\uzo # 0, then
H' '

Sl R ( O (u, p)

(0,0)

Next, let us consider the following generalized Gause type predator-prey system:
' (t) = p(x(t), O)(h(z(t), 0) — 7(y(t), 0)),
y'(t) = v(x(t), O)p(y(t), 6)

where o, h, ¥, m,p € C3(Ry x J,R),0, € J C R and for each § € J the following
assumptions are satisfied.

(10)
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G1. 7(0,0) = p(0,0) = 0 < '(y,0) and p'(y,0) Vy € Ry;

G2. ¢ (2,0) 20=¢(0,0) V2 eRy;

G3. 3Ky >0 3 h(z,0)(z — Ky) <0Vz eRy — {Ky};

G4. IA=X(0) € (0,Kp) 3 ¢(,0)(z —A) >0V 0 <z #\
G5. h((0,Kg],0) C w(Ry,0) and § = §(0) = 7~ L(h(A(0),0));

G6. B/ (A(6.),0.) = 0 # %(@(A(G),9)h’(A(9),0))|9* and ¥/ ((6),6) > 0.

Obviously, e, = (A, ) is the only positive equilibrium of (10) and the Jacobian matrix of
the system (10) at e, is

J = 90(/\’ a)h/(>” ) _90(/\’ 9)7T'/((5, 9) :|
p(d '

0
(6,0)9" (N, 0) 0
The characteristic equation and eigenvalues are given by
5% — o(X 0)h' (X, 0)s + ©(X, 0)7'(6,0)p(8,0)1' (X, 0) =0

and

(0 (0,0) = Vo O (X, O)2 = 4p(X, ) (5, 6)p(6, )/ (X, 6) ) /2,

respectively. Hence e, is stable if h/(A,0) < 0 and e, is unstable if A'(\,0) > 0. Let
®(z) = [y (¢(&)71d¢ and Q(y) = [; (p(n))~'dn. Then, by (G1) and (G2), ®'(x) > 0 and
Q'(y) > 0forall z, y € R,. Hence, ®~! and Q! exist. Now, consider the change of variable
(z,y) — (u,v) where

u=®(), v=0Q(y)

Then, (u,v) = 0 if and only if (z,y) = e,, and we have

where
(v, p) = m(8, p+ 04) — w(y, p+ 6.),

H(u, p) = h(A, p+ 0x) — h(z, p+0,),
and
W) = i+ 0.).

Since it is easy to see that U'(u,u) = —¢'(z,0)p(x,0), H (u,u) = —h'(z,0)p(z,0) and
' (v, u) = —7'(y,0)p(y,0), we have ¥’/(0,0)II'(0,0) > 0 and H(0,u) = H'(0,0) = 0 #
%H’(O, 0). Therefore, the result

16 = ¢ (A(65), 0.)%"(A(0.), 65) (W) (02,0

follows from the fact H” (u,u) = —(p(z, 0)h/ (z,0)) ¢(z,0), and Theorem 2.1. This proves
the following theorem.
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Theorem 2.3. If (G1)-(G6) hold for system (10), then

(p(z,0)N (z, 0))’)' |
T J@e) (A(64),6.)

Similarly, by using of Cauchy Mean Value Theorem and L’Hospital Rule as in Theorem
3, we have the following result.

165 = 2 (\(6.),0.) (\(6,),6.) (

¥ (x,0)

p(x,0)h' (x,0) )'
¥(x,0)

, /
Theorem 2.4. If (G1)-(G6) hold and (M) l(7(0.),0.) # O, then

> 0.
(A(6.),6.)

k- POO), 0.0 (\0.), 0.) (

3 Example

In this section, we will determine the criticality of the Hopf bifurcation of the following
example through the method introduced in Section 2.

Example Lengyel et al. ([5], [6]) proposed a model of oscillation reaction, the chlorine
dioxide-iodine-malonic acid (ClO2-I;-MA) reaction.

MA +1, - IMA+1" +HT
ClO; +17 — ClO; + 31,
ClOy + 417 + 4H' — Cl™ + 215 + 2H50

Through their simulations, they reduced the system to a two-variable model. After appro-
priate nondimensionalization, the model becomes

4
dma—z— T )
"=br|1- bry \ _ (z,y) 7
Yy = 1122 =97,y

where zandy denote the dimensionless concentrations of I~ and ClO; and a,b > 0 are
parameters.

. . : . : 675+25+/769
Theorem 3.1. The Hopf bifurcation of system (11) is supercritical if 0 < a < >=FpEE2
while it is subcritical if a > % V769
Proof. To apply our results, we make the change of variables v = x — %y and dt = p(x)dr
so that system (3.1) is converted into the Liénard system

dx dv
. =v— H(z), e —U(x)
where
o(z) = 1%2 H(z) =z — (1+:62§(1—w) U(z) = %(1 +22)(5 — %).
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Note that the bifurcation occurs at the points (z,y.) such that f =g =0, f, + gy = 0,
and fyg, — fygz > 0, from which follows

a a? 3a 25 5v'15
* — T *:1 77b:7_77 - a9 -
Te=m =1t os 5 a0 %7 T3

According to Theorem 2, a direct computation gives

H”(z)>’ |  (2a* — 675a% — 3125)

16k = —W(x,) ( ' (z) 125(a? + 25)

Thus, we are done. O
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