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Abstract

Let m be a square-free integer and let K = J(v/m) be a quadratic field with
discriminant d divisible by exactly three distinct primes. Results on elementary Gauss-
genus theary implies that the Sylow 2-subgroup of the ideal class group H™ in the
narrow sense of K is isomorphic to 5% @ f5 for some nonnegative integers k and [.
In this paper, we give sufficient and necessary conditions under which H + contains a
subgroup isomorphic to % ® 5.
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1 Review of Related Literature

Let m be a square-free integer and K be the quadratic field Q(/m) with discriminant d
and let Ox denote its ring of integers. For ideals a and b in Ok, we write a = b, if there
exists nonzero integers a and 8 in Ok with norm N(«f) > 0 such that (a)a = (5)b. It
can be shown that = is an equivalence relation of ideals in Oy and the equivalence classes
induced by this relation forms an abelian group H* called the narrow ideal class group of
K([7, 8, 9]). The order h* of H is called the narrow class number of K.

For brevity, we write a & [J if there exist an ideal b such that a = b2,

The study of the Sylow 2-subgroup G of the narrow ideal class group of K can be traced
back to Gauss([6]). Hasse ([7]) proposed a method for computing G using Legendre theorem
but the method requires decomposition of many integers to its prime factorization([2, 9]).
Shanks([15]), Bosma and Stevenhagen ([1]) calculated G using Gauss’ ternary quadratic
form but they did not use the ideal theory directly so they were not able to calculate G in
the wide sense. Basilla and Wada([5]) proposed a faster method for computing G.

Using class field theory, Redei and Reichard ([13]) were able to show the necessary
and sufficient conditions for the narrow class number of a quadratic field with discriminant
divisible by exactly 2 primes say p and ¢ to be divisible by 4. Scholz([14]) and Kaplan([10]),



2 CHRISTOPHER SANTOS AND JULIUS BASILLA

working separately and applying different methods, have extended these results by arriving
at a sufficient and necessary conditions so that the narrow class number of a field with
discriminant divisible by exactly 2 primes will be divisible by 8.
Nemenzo([11]) and Basilla([3]) were able to verify the results of Scholz using Ideal Theory
and Legendre’s theorem on the solvability of the Diophantine equation az? + by® = 22([9]).
In this paper, we extend these results to the case where the discriminant is divisible by
exactly three primes following the approaches of Nemenzo, Basilla and Wada.

2 A note on quadratic fields with discriminant divisible
by exactly three primes

Let K = Q(/m), m a square-free integer, be quadratic field with discriminant d divisible
by exactly three distinct primes p, g, 7. We denote the prime ideals lying over p, ¢ and r by
P, q and v respectively. Then the eight ambiguous primitive ideals in Oy are Ok, p, q, v, pq,
pt, qr, pgr and these eight primitive ambiguous ideals are segregated into four ambiguous
classes with each ambiguous class containing two primitive ambiguous ideals (cf. [12]). We
therefore have the following seven possibilities.
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The diagrams above mean that primitive ideals belonging to the same quadrant are
equivalent in the narrow sense, or are in the same ambiguous class. For instance the upper
leftmost diagram means that Ox = p ,q = pq, v = pr and pqr = qr.

The ambiguous ideal classes are precisely the elements of the ideal class group of order
2 (z2 = 1). By repeatedly taking the square roots of each of the primitive ambiguous
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ideals Ok, p, q , ¢, pq, pr, qc and pqr, we can determine the largest power of 2 dividing
the narrow class number of Q(,/m) and the distribution of the primitive ambiguous ideals
on the ambiguous ideal classes (cf. [5]). In order to determine the sufficient and necessary
condition for the narrow class number to be divisible by a power of 2, we need to count how
many times we can take the square roots iteratively of the primitive ambiguous ideals.

In addition, the principal ideal (y/m) is among these eight primitive ambiguous ideals.
If the norm of the fundamental unit is —1, the equivalence classes in the wide sense and in
the narrow sense coincides. This forces (v/m) = Ok. Hence, if (y/m) ¥ Oy, we conclude
that the norm of the fundamental unit is 1. Also for imaginary quadratic tields (m < 0),
the equivalence classes in the wide sense and in the narrow sense always coincides. Hence,
we always have (y/m) = Og. This makes the imaginary cases simpler than the real cases
as we shall see for the remainder of the paper.

3 Sufficient and necessary conditions for an ideal to be
equivalent to a square

We now determine sufficient and necessary conditions under which the ideals p, g and v will
be equivalent to a square. Thus we need a criterion for an ideal to be equivalent to a square.
This fact is taken care of by following theorem:

Theorem 1. Let a = [a,b +w] be an ideal in Q(y/m) and lel a1 denote the square-free part
of a. Then a = C if and only #f for all odd prime p dividing m, we have

r r

(EL) =1ifp fa; and (M) =1 ifplai(ef [4))

We obtain the following corollaries.

Corollary 2. Let K = Q(y/m) be a quadratic field with discriminant d divisible by a prime
P | |
p and let p be a prime ideal lying over p. Then p =0 if and only if (—p-"—) =1 and for all

odd prime q dividing d and g # p,we have (g) =1.

Corollary 3. Let K = Q(y/m) be a quadratic field with and even discriminant d and let p
be the primme ideal lying over 2. Then p = O if and only if for all odd prime p dividing d,

2Y _
;)—].

4 Main Results

We now give a sufficient and necessary criteria for the narrow class number H™ to contain
a subgroup isomorphic to % @ Z, when the discriminant d is divisible by 3 distinct primes,
say p, g and . This calls for establishing a sufficient and necessary criterion for the primes
lying over p, ¢ and r to be equivalent to the square of some ideal.

Proposition 4. Let K = Q(y/m) be a quedratic field with discriminant d =1 (mod 4) and
divisible by exactly 3 distinct primes p, g and r. Then H™ contains a subgroup isomorphic

to £ & £ if and only if (E) = (2) = (2) =1 and at least two of p, ¢ end T are congruent
1 medulo 4.
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Proof. If m = pqr,tmidulpmmfmdonlyif(:ﬂ)-=(!)-(!)-1. Likewise, the
ideal q O if and only if () = (%) = (£) = 1 and the ideal ¢ = O if and only if
(—P)=(;)=(‘)-1.Hmﬁtheideahp,qandrma.lleqniulenttoasqm,
we have (2) = (2) = (2) = (5) = (8) = () = 1. It also follows that at least two
of p, ¢ and r are conguent to 1 modulo 4. On the other hand, if at least 2 of p, ¢ and
rmmn;nwnttolmdubtﬂyr-@ﬁl(mﬂd‘"'"'d(s)=[5)=(§)'l-"
obum(:;z)=1md(:'=)-1.smul(mda},itfoumthaus:(modajmd
therefore(=29) = 1.

If m = —pgr then r = 3 (mod 4). In this case, the ideal p O if and only if () =
(2) = (2) = 1. Likewise, the ideal q O if and only if (%) = (1) = (%) = 1 and

the ideal ¢ 2 O if and only if (82) = (£) = (5) = 1. Hence, if the ideals p, q and ¢

mnﬂeqﬂvahmtoasqwe,whaw(f)=()=(’-) ()-(’)=()—1
Conversely, if at least 2 of p, ¢ and r is congruent to 1 modulo 4, say p = ¢ = 1 (mod 4),
and () = () = (%) =1, we obtain (%) =1, (&) =1 and (¥) =1 0

We now consider the case where 2, p and g are the distinct primes dividing d. If ris a
prime lying over 2. r 2 O if and only if (;) - (;) = 1. Hence, t2 (] if and only if p = 1
or 7 (mod 8) and ¢ =1 or 7 (mod 8).

Proposition 5. Let K = Q(y/m) be a quadratic field with m = 3 (mod 4) and m divisible
by eractly two distinct odd primes p and g. Then H* contains a subgroup isomorphic to

ok Vordonlyifm=—pg,p=q=1(mod8), (2)=1.

Proof. Lertp,qmdrbetheprimlyingwr,qandzmpectiwly The;dea]p![]it’and
onlyif(l,?-) (2)-1.ndqn|:i:fmdon|yif( £) = ()-1 Sinco() ()
ud(?)—(;')-l,thenp.q.l(mdd). Hence, m = pq is not possible. Thus
;n:-pqsl{mod«l). In view of the discussion preceding the proposition, p = ¢ = 1
mod B).
Convemlyifp=q51(modB)and(f)=1.wucnnshowtl:m(=)-(=)-(g)-l.

Thus p, q and r are all congruent to squares.
O

Proposition 6. Let K = Q(/m), m = 2pq where p and q are distinct odd primes. Then
H* contains a subgroup isomorphic to & ® % if and only if p=q¢ =1 (mod §), (2) =1,

Proof. Let p, q and t be the primes lying over p, ¢ and 2. The ideals p and q are equivalent
tothesquueofnmmndmklfmdmbif(—?) () (’) (—:l)=l.l!m.n
least one of p and ¢ = 1 (mod 4).

Again, from the discussion preceding proposition 5, we must have p = 1 or 7 (mod 8)
and ¢ = 1 or 7 (mod 8). Without loss of generality, we assume that p = 1 (mod 8). Since

q =0, we have (ﬁl)(%) (')-l Hence, (—-1)-1 Thus equivalently ¢ = 1 (mod 8).
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Conversely, if p=g=1 (mod 8) and (E) = 1 we have v = [. Also, (%) = (5) =1,
so p = [. Likewise, q = [J. Therefore, H* contains a subgroup isomorphic to ;zz- & ;zz O
Proposition 7. Let K = Q(y/m), m = —2pq where p and q are distinct odd primes. Then
H* contains u subgroup isomorphic to zzz =] % if and only if

i p=1,

ii. ¢=+1 (mod 8), and

i, (g) =1.
Proof. Let p, q, t be the prime ideals lying over p, ¢ and 2, respectively. The ideals p and
q are equivalent to the square of some ideals if and only if (E) = (g) = 1. Thus,p=1
(mod 4) or ¢ =1 (mod 4). Without loss of generality we can asswme p = 1 (mod 4). From
the discussion preceding Proposition 5, we must have (%) = (%) = 1. It follows that p = 1
(mod 8).
. . _ =1 - (2) = :

Conversely, if the conditions p = 1 (mod 8) and (5) = 1 imply (;) = (p) = 1 while
the condition ¢ = +1 (mod 8) implies (g) =1

Thus, t = [, p 2 0, and q 2 O; hence H™ contains a subgroup isomorphic to fzﬂéﬁ 0

These exhaust the quadratic fields with discriminant divisible by exactly three primes
and with ideal class group containing a subgroup isomorphic to & b Ezz
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