
MATIMYÁS MATEMATIKA Journal of the Mathematical Society of the Philippines
ISSN 0115-6926 Vol. 32 No. 2 (2009) pp. 33-39

Singular Value Decomposition of

Symmetric Complex Partitioned Matrices

Jimmy V. Viloria
Engineering Sciences Department

College of Engineering, University of Santo Tomas

España, Manila, Philippines
email: jim928ph@yahoo.com

Abstract

We give an alternate proof to the singular value decomposition of symmetric com-
plex partitioned matrices. Such decomposition can be obtained by finding a unitary
and symmetric complex partitioned square root of a unitary and symmetric complex
partitioned matrix. This square root can be found by looking at decompositions of
normal complex partitioned matrices.
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1 Introduction

Let Φ =

[
A −B
B A

]
, where A,B ∈ Mn(C), be the set of complex partitioned matrices.

Complex partitioned matrices are used to study quaternion matrices. This is possible since
the ring of quaternion matrices is isomorphic to the ring of complex partitioned matrices.
Since complex partitioned matrices are complex matrices, they admit all decompositions
of complex matrices. The question is: Which decompositions can be obtained using only
complex partitioned matrices?

Over Mn(C),a symmetric matrix A can be factored as A = UDUT for some unitary U
and diagonal D with non-negative entries [Aut]. If A is complex partitioned, then it has
such decomposition. Is it possible to have all factors in Φ? The answer is affirmative. In
fact there are two ways to obtain the decomposition in Φ. One is to obtain orthonormal
coneigenvectors of the matrix [JV2]. The other method is an adaptation of the method used
by Autonne and this will be discussed in this paper. Autonne obtained the decomposition of
A using its singular value decomposition(SVD). Let A = UDV be its SVD, where D = F⊕0
with F ∈ Mr(R). Then AT = V TDUT and (V U)D = D(V U)T . By one of the properties
of unitary matrices which will be stated as a lemma later on, we have V U = V1⊕V2, where
V1 is unitary and symmetric which commutes with F . Then

A = V T (V U)DV = V T (V1 ⊕ V2)DV = V T (V1 ⊕ In−r)DV.
Over the complex matrices, V1⊕ In−r has a unitary and symmetric square root, say S, that
commutes with D. Hence

A = V TS2DV = V TSDSV = (SV )TD(SV )
is the desired factorization. Thus, if such approach will be used to extend this decomposition
to Φ, the question is: Is there a unitary and symmetric complex partitioned square root of
a unitary and symmetric complex partitioned matrix? To answer this question we look at
decompositions of normal matrices in Φ.
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2 Normal and Symmetric Matrices

A matrix A ∈ Mn(C) that is normal is diagonalizable via a unitary matrix. If in addition,
A is symmetric, then A can be diagonalized using a real orthogonal matrix [H&J].

Let A ∈Mn(C) be unitary so that A is normal. Then there exists a unitary Q ∈Mn(C)
such that A = QDQ∗, where D = eiθ1In1⊕eiθ2Ink

⊕· · ·⊕eiθkInk
, with n1+n2+ · · ·+nk = n

and θi ∈ R for each i. Let D1 = eiθ1/2In1
⊕ eiθ2/2In2

⊕ · · · ⊕ eiθk/2Ink
and A1 = QD1Q

∗.
Then A1 is a unitary square root of A. If in addition, A is symmetric, then Q can be chosen
to be real orthogonal so that A = QDQT and A1 = QD1Q

T . Hence, A1 is symmetric. Then
we have the following.

Theorem 2.1. Let A ∈ Mn(C) be unitary and symmetric. Then A has a unitary and
symmetric square root.

The following lemma (see [Aut]) characterizes matrices which commute with a diagonal
matrix.

Lemma 2.2. Let D = d1In1
⊕· · ·⊕dkInk

with n = n1+ · · ·+nk and di 6= dj for i 6= j. Then
X commutes with D if and only if X = X1 ⊕ · · · ⊕Xk, where Xi ∈Mni

(C). In particular,
if X is unitary, then each Xi is also unitary.

By Lemma2.2, Theorem 2.1 can be restated as follows.

Theorem 2.3. Let A ∈ Mn(C) be unitary and symmetric. Then A has a unitary and
symmetric square root which commutes with every matrix that commutes with A.

Autonne’s proof of the preceding theorem does not make use of the diagonalizability of
a normal and symmetric matrix via a real orthogonal matrix. Instead he begins with the
fact that a unitary matrix is diagonalizable via a unitary matrix and and the square root is
constructed same as above. To determine if a normal and symmetric complex partitioned
matrix is diagonalizable via a real and orthogonal complex partitioned matrix we need to

look at decompositions of matrices of the form

[
A B
B −A

]
, where A,B ∈ Mn(C), using

complex partitioned matrices. Let Ψ =

{[
A −B
B A

]
, whereA,B ∈Mn(C)

}
. Unlike Φ,

the set Ψ is not a ring since it is not closed under matrix multiplication. In fact, given two
matrices W1 and W2 in Ψ, we have W1W2 ∈ Φ. Notice also that(

A B
B −A

)
=

(
A −B
B A

)(
In 0
0 −In

)
and that W ∈ Ψ if and only if iW ∈ Φ. Therefore, for any nonsingular S ∈ Φ and W ∈ Ψ,
we have

S−1(iW )S = i(S−1WS)

which implies that S−1WS ∈ Ψ. It is of interest to know the canonical forms of W ∈ Ψ via
elements of Φ.

Let W ∈ Ψ be normal. Then iW ∈ Φ and hence, there exists a unitary U ∈ Φ such that
U∗(iW )U = D ⊕D, where D is diagonal whose entries have non-negative imaginary parts.
This implies that

U∗WU = −iD ⊕−iD = −iD ⊕−
(
−iD

)
Let F = −iD. Then the diagonal entries of F have non-negative real parts and U∗(iW )U =
F ⊕−F . This is summarized in the next theorem.
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Theorem 2.4. Let W ∈ Ψ be normal. Then there exists a unitary U ∈ Φ such that
U∗WU = D ⊕−D, where D is diagonal whose entries have non-negative real parts.

The preceding theorem implies that if W ∈ Ψ, then there are exactly 2n eigenvalues of
W which are symmetrically located along the imaginary axis. Thus, we obtain the following
decompositions of unitary, Hermitian, and real symmetric matrices in Ψ.

Corollary 2.5. Let W ∈ Ψ be unitary. Then there exists a unitary U ∈ Φ such that
U∗WU = D ⊕ −D, where D = eiθ1In1

⊕ eiθ2In2
⊕ · · · ⊕ eiθkInk

with −π2 ≤ θj ≤ π
2 for

j = 1, 2, · · · k.

If the matrix is Hermitian, we have the following.

Corollary 2.6. Let W ∈ Ψ be Hermitian. Then there exists a unitary U ∈ Φ such that
U∗WU = D ⊕−D, where D is real diagonal consisting only of non-negative entries.

If x =
[
x1 x2

]T
is an eigenvector of W ∈ Ψ with corresponding eigenvalue λ, then

xc =
[
−x̄2 x̄1

]T
is also an eigenvector of W corresponding to −λ̄. If W is real symmetric,

then x and xc can be chosen so that both are real vectors.

Corollary 2.7. Let W ∈ Ψ be real symmetric. Then there exists a real orthogonal U ∈ Φ
such that UTWU = D ⊕ −D, where D is real diagonal consisting only of non-negative
entries.

Let W =

[
A −B
B A

]
be normal and symmetric. Write A = A1+iA2 and B = B1+iB2,

where Aj , Bj ∈Mn(R) for j = 1, 2. Then

W =

[
A1 + iA2 −(B1 + iB2)
B1 + iB2 A1 + iA2

]
=

[
A1 −B1

B1 A1

]
+ i

[
A2 B2

B2 −A2

]
.

Let W1 =

[
A1 −B1

B1 A1

]
and W2 =

[
A2 B2

B2 −A2

]
. Then W = W1 + iW2. Since W is

symmetric, W1 and W2 are real symmetric. By normality of W , then W1 commutes with
W2. Since W1 is real symmetric, there exists a real orthogonal Q1 ∈ Φ such that QT1WQ1 =
D1⊕D1,where D1 = a1In1⊕a2In2⊕· · ·⊕akInk

and the ai’s are distinct real numbers [JV1].

Let QT1W2Q1 =

[
S T
T −S

]
, where S, T ∈Mn(R). Since W1 commutes with W2, then

(Q1(D1 ⊕D1)QT1 )W2 = W2(Q1(D1 ⊕D1)QT1 )

which implies that

(D1 ⊕D1)(QT1W2Q1) = (QT1W2Q1)(D1 ⊕D1)

that is [
D1 0
0 D1

] [
S T
T −S

]
=

[
S T
T −S

] [
D1 0

0 D1

]
.

Hence, D1S = SD1 and D1T = TD1. By Lemma 2.2, S and T can be written as S =
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S1 ⊕ · · · ⊕ Sk and T = T1 ⊕ · · · ⊕ Tk , where Si, Ti ∈Mni
(R) for i = 1, . . . , k. Therefore

QT1W2Q1 =



S1 · · · 0 T1 · · · 0
...

. . .
...

...
. . .

...
0 · · · Sk 0 · · · Tk
T1 · · · 0 −S1 · · · 0

...
. . .

...
...

. . .
...

0 · · · Tk 0 · · · −Sk


.

Let Wli =

[
Si Ti
Ti −Si

]
for i = 1, . . . , k. Since W2 is symmetric, Wli is real and symmetric

for each i. By Corrolary 2.7, we can find a real orthogonal complex partitioned matrix Qli
such that QTliWliQli = Fi ⊕ −Fi , where Fi is diagonal and has non-negative entries for

i = 1, . . . , k. Let Qli =

[
Ci −Ei
Ei Ci

]
, where Ci, Ei ∈Mni

(R) for i = 1, . . . , k. Let

Q2 =



C1 · · · 0 −E1 · · · 0
...

. . .
...

...
. . .

...
0 · · · Ck 0 · · · −Ek

E1 · · · 0 C1 · · · 0
...

. . .
...

...
. . .

...
0 · · · Ek 0 · · · Ck


,

then Q2 ∈ Φ is real orthogonal and QT2 (QT1W2Q1)Q2 = F ⊕−F , where F = F1 ⊕ · · · ⊕ Fk.
Since E1⊕ · · · ⊕Ek and C1⊕ · · · ⊕Ck commute with D1, then Q2 commutes with D1⊕D1.
Hence

QT2 (QT1WQ1)Q2 = QT2 (D1 ⊕D1)Q2 + iQT2 (QT1W2Q1)Q2

= (D1 ⊕D1) + i(F ⊕−F )
= (D1 + iF )⊕ (D1 + iF )
= (D1 + iF )⊕ (D1 + iF )

We summarize this in the following.

Theorem 2.8. Let W ∈ Φ be normal and symmetric. Then there exists a real orthogonal
matrix Q ∈ Φ such that QTWQ = D ⊕ D , where D is diagonal whose entries have non-
negative imaginary parts.

Let W ∈ Φ be unitary. Then there exists a unitary Q ∈ Φ such that Q∗WQ = D ⊕D
, where D = eiθ1In1

⊕ eiθ2In2
⊕ · · · ⊕ eiθkInk

with n1 + n2 + · · · + nk = n. Let D1 =
eiθ1/2In1⊕eiθ2/2In2⊕· · ·⊕eiθk/2Ink

and W1 = Q(D1⊕D1)Q∗. Then W1 is a unitary square
root of W . Moreover, by the construction of D and D1 and Lemma 2.2, every matrix which
commutes with W commutes with W1. If, in addition, W is symmetric, then Q can be
chosen so that it is real orthogonal and this implies that W and W1, can be written as
W = Q(D ⊕D)QT and W1 = Q(D1 ⊕D1)QT . Hence, W1 is symmetric.

Theorem 2.9. LetW ∈ Φ be unitary and symmetric. ThenW has a unitary and symmetric
square root which commutes with every matrix that commutes with W.

It was shown in [Aut] that every unitary matrix U ∈ Mn(C) can be written as U =
Q1DQ2, where Q1 and Q2 are both real orthogonal and D is diagonal. The following shows
that same factorization holds true in Φ.
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Theorem 2.10. Let U ∈ Φ be unitary. Then U can be written as U = Q1(D ⊕ D)Q2,
where Q1 and Q2 are both real orthogonal in Φ and D = diag(eiθ1 , . . . , eiθn).

Proof. Suppose U ∈ Φ is unitary. Then UUT ∈ Φ and symmetric. By Theorem 2.8, we
can find a real orthogonal matrix Q ∈ Φ such that QTUUTQ = D ⊕ D , where D =
diag(eiθ1 , . . . , eiθn). Let F = D1 ⊕D1 , where D1 = diag(eiθ1/2, . . . , eiθn/2). Then

(F−1QTU)(F−1QTU)T = F−1(QTUUTQ)F−1 = F−1(D ⊕D)F−1 = I2n.

Thus, F−1QTU is orthogonal and unitary, hence it must be real. If we let Q1 = Q and
Q2 = F−1QTU , then Q1FQ2 = U

3 The Symmetric Matrix

This section presents Autonne’s decomposition holds true in Φ by adapting his approach.
But first we need to characterize n × n unitary matrices U and V such that F = UFV ,
where F = D⊕ 0 with D = d1In1

⊕ · · · ⊕ dkInk
∈Mr(R) and d1 > · · · > dk > 0 (see [Aut]).

Lemma 3.1. The complex unitary matrices U and V that satisfy F = UFV commute with
F and have the forms U = U1 ⊕ U2 and V = V1 ⊕ V2.Consequently, U1 commutes with D
and U1V1 = Ir. Moreover, U2 and V2 are arbitrary unitary matrices.

The next lemma can be easily shown using the trace of a matrix.

Lemma 3.2. Let A and B be complex matrices such that AA∗+BB∗ = 0. Then A = B = 0.

Let W ∈ Φ and W = U(D⊕D)V be its SVD, where D1 = a1In1
⊕a2In2

⊕· · ·⊕akInk
∈

Mr(R) and the ai’s are positive. Then

U(D ⊕D)V = W = WT = V T (D ⊕D)UT

which implies that
V U(D ⊕D)V U = D ⊕D.

Let Z = V U . Then Z ∈ Φ is unitary and Z(D ⊕D)Z = D ⊕D. Write

Z =


Z11 Z12 −Z31 −Z32

Z21 Z22 −Z41 −Z42

Z31 Z32 Z11 Z12

Z41 Z42 Z21 Z22


conformal to

D ⊕D =


D1 0 0 0

0 0 0 0
0 0 D1 0
0 0 0 0


Since Z(D ⊕D) = (D ⊕D)ZT , then Z21D1 = 0 and Z41D1 = 0. Since D1 is nonsingular,
Z21 = 0 and Z41 = 0. Therefore, we can write Z as

Z =


Z11 Z12 −Z31 −Z32

0 Z22 0 −Z42

Z31 Z32 Z11 Z12

0 Z42 0 Z22
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Since ZZ∗ = Z∗Z, then

Z11Z
∗
11 + Z12Z

∗
12 + Z31Z

T
31 + Z32Z

T
32 = Z∗

11Z11 + Z∗
31Z31.

Since tr(A) = tr(AT ) and tr(AA∗) = tr(A∗A) for any complex matrix, tr(Z12Z
∗
12 +

Z32Z
∗
32) = 0. By Lemma 3.2, Z12 = Z32 = 0. Therefore, Z can be rewritten as

Z =


Z11 0 −Z31 0

0 Z22 0 −Z42

Z31 0 Z11 0
0 Z42 0 Z22

 .
Let Z1 =

[
Z11 −Z31

Z31 Z11

]
. Then Z(D⊕D)Z = D⊕D implies that Z1(D1⊕D1)Z1 = D1⊕D1.

By Lemma 3.1, Z1 commutes with D1 ⊕D1 and Z1Z1 = I. Since Z is unitary, Z1 must be
unitary. Hence, Z∗

1 = Z−1
1 = Z1 , which implies ZT1 = Z1.Therefore, Z1 ∈ Φ is unitary and

symmetric. Since Z1 commutes with D1 ⊕D1, Z11 and Z31 commute with D1. Therefore,
we can write Z11 = S1 ⊕ · · · ⊕ Sk and Z31 = T1 ⊕ · · · ⊕ Tk , where Si, Ti ∈ Mni(C) for
i = 1, . . . , k. This implies that

Z1 =



S1 · · · 0 −T1 · · · 0
...

. . .
...

...
. . .

...
0 · · · Sk 0 · · · −Tk
T1 · · · 0 S1 · · · 0

...
. . .

...
...

. . .
...

0 · · · Tk 0 · · · Sk


.

Let Ai =

[
Si −Ti
Ti Si

]
for i = 1, . . . , k. Then each Ai is unitary and symmetric. By

Theorem 2.9, Ai has a unitary and symmetric complex partitioned square root, say Bi. Let

Bi =

[
Xi −Yi
Yi Xi

]
and

X =



X1 · · · 0 −Y1 · · · 0
...

. . .
...

...
. . .

...
0 · · · Xk 0 · · · −Yk
Y1 · · · 0 X1 · · · 0

...
. . .

...
...

. . .
...

0 · · · Yk 0 · · · Xk


.

Then X is unitary and symmetric which commutes with D1 ⊕D1. Let

S =



X1 · · · 0 0 −Y1 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · Xk 0 0 · · · −Yk 0
0 · · · 0 In−r 0 · · · 0 0
Y1 · · · 0 0 X1 · · · 0 0

...
. . .

...
...

...
. . .

...
...

0 · · · Yk 0 0 · · · Xk 0
0 · · · 0 0 0 · · · 0 In−r
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By direct calculation, we get Z(D⊕D) = S2(D⊕D). Since X is symmetric and commutes
with D1 ⊕D1, then S is symmetric and commutes with D ⊕D and this implies that

Z(D ⊕D) = S(D ⊕D)S = ST (D ⊕D)S.

Since V TV = I2n , we have

W = U(D ⊕D)V = (V TV )[U(D ⊕D)V ].

Since Z = V U , then

W = V TZ(D ⊕D)V = V T [ST (D ⊕D)S]V = (SV )T (D ⊕D)(SV ).

If we let Q = (SV )T , then Q ∈ Φ is unitary and W = Q(D⊕D)QT . This is summarized in
the following.

Theorem 3.3. Let W ∈ Φ be symmetric. Then there exists a unitary Q ∈ Φ such that
W = Q(D ⊕D)QT , where D is diagonal and consists only of non-negative entries.

References

[Aut] L. Autonne. Sur Les Matrices Hypohermitiennes Et Sur Les Matrices Unitaries. An-
nales de L’Universite de Lyon. Nouvelle Serie I, Fasc.38, 1-77 (1915), translation of
key ideas, methods, and commentary by Dennis I. Merino.

[H&J] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, New
York, 1985.

[JV1] J.V. Viloria. Decompositions Involving Quaternion and Complex Partitioned Matri-
ces. Matimyas Matematika. Vol. 26 Nos. 1-3 (2003).

[JV2] J.V. Viloria. Singular Value and Polar Decompositions of Complex Partitioned Ma-
trices. Matimyas Matematika. Vol. 28 Nos. 1-3 (2005).


