McShane Integrability and Egoroff's Theorem

JULIUS V. BENITEZ¹
Department of Mathematics
MSU-Iligan Institute of Technology
Iligan City, Philippines
julius.benitez@g.msuiit.edu.ph

FERDINAND P. JAMIL
Department of Mathematics
MSU-Iligan Institute of Technology
Iligan City, Philippines
ferdinand.jamil@g.msuiit.edu.ph

CHEW TUAN SENG
Department of Mathematics
National University of Singapore
Singapore
matcts@math.nus.edu.sg

Abstract

In this paper, we will give an alternative proof of Egoroff's Theorem without using concepts in measure theory.

Keywords: McShane integral, Egoroff's Theorem

1 Introduction

In classical measure theory, Egoroff's theorem establishes the implication of pointwise convergence of a sequence of measurable functions to uniform convergence. The usual proof of this theorem uses concepts in measure theory. In 1910, Carlo Severini gave the first proof. A year later, Dmitri Egorov independently published his results and the theorem became known under his name, after which many other versions and alternative proofs of the theorem arose (see [5, 6, 7]).

In the late 1960s, the McShane integral was introduced by E.J. McShane to overcome the difficulty of the Henstock integral as a nonabsolute integral. It is Riemann-type with the property: A function is McShane integrable if and only if its absolute value function is McShane integrable [8]. As a result of this property, the McShane integral is equivalent to the Lebesgue integral [1].

In this paper, we will give a version of Egoroff's Theorem using concepts in McShane integrability.

¹Research funded by the Commission on Higher Education, Philippines

2 Preliminaries

Let us revisit the following definitions.

Definition 2.1. A function $f:[a,b]\to\mathbb{R}$ is said to be *McShane integrable* to A on [a,b] if for each $\epsilon>0$, there exists $\delta(\xi)>0$ on [a,b] such that whenever $D=\{([u,v],\xi)\}$ is a McShane δ -fine division of [a,b], we have

$$|(D)\sum f(\xi)(v-u)-A|<\epsilon.$$

Recall that by a $McShane\ \delta$ -fine division $D=\{([u,v];\xi)\}$ of [a,b] we mean that $[u,v]\subseteq (\xi-\delta(\xi),\xi+\delta(\xi))$. If $f:[a,b]\to\mathbb{R}$ is McShane integrable to A, we write $A=(\mathcal{M})\int_a^b f(x)dx$, and call A as the $McShane\ integral$ of f on [a,b].

In what follows, unless otherwise stated, all integrals referred to are McShane integrals, and we write $\int_a^b f(x)dx = (\mathcal{M}) \int_a^b f(x)dx$.

Definition 2.2. Let $E \subseteq \mathbb{R}$. The characteristic function $\mathbf{1}_E$ on E is defined by

$$\mathbf{1}_E = \left\{ \begin{array}{ll} 1, & \text{if } x \in E, \\ 0, & \text{if } x \notin E. \end{array} \right.$$

We now introduce the concept of an integrable set (see [4]).

Definition 2.3. Let \mathcal{B} be the family of subsets $E \subseteq \mathbb{R}$ such that $\mathbf{1}_{E \cap [a,b]}$ is McShane integrable on [a,b] for all closed intervals [a,b] in \mathbb{R} . Let $E \in \mathcal{B}$. If $E \subseteq [a,b]$, then define

$$m(E) = \int_a^b \mathbf{1}_E(x) \ dx.$$

If $E \nsubseteq [a, b]$, define

$$m(E) = \lim_{n \to \infty} m(E \cap [-n, n]).$$

We refer to E as an integrable set and \mathcal{B} the collection of all integrable sets in \mathbb{R} .

Yang in [4] showed that integrable sets are actually Lebesque measurable sets. In the same paper, Yang also showed that if $\{E_n : n \in \mathbb{N}\} \subseteq \mathcal{B}$ is a countable collection of pairwise disjoint integrable sets, then $\bigcup_{n=1}^{\infty} E_n$ is an integrable set and

$$m\Big(\bigcup_{n=1}^{\infty} E_n\Big) = \sum_{n=1}^{\infty} m(E_n).$$

Hence, one can verify that if $\{E_n : n \in \mathbb{N}\} \subseteq \mathcal{B}$ is a countable collection of integrable sets, then $\bigcup_{n=1}^{\infty} E_n$ is an integrable set and

$$m\Big(\bigcup_{n=1}^{\infty} E_n\Big) \le \sum_{n=1}^{\infty} m(E_n).$$

The following result and its proof can be found in [4].

Theorem 2.4. [4] If $A \subseteq [a,b]$ is an integrable set, then for each $\epsilon > 0$ there exists an open set $G \subseteq [a,b]$ such that $A \subseteq G$ and

$$\int_a^b \mathbf{1}_{G \setminus A}(x) \ dx < \epsilon.$$

Definition 2.5. An integrable set $E \subseteq \mathbb{R}$ is said to have variation zero if

$$\int_a^b \mathbf{1}_E(x) \ dx = 0.$$

It is worth noting that a subset of a set of variation zero is again of variation zero.

Definition 2.6. A property is said to hold almost everywhere (abbreviated a.e.) on A if the set of points in A where it fails to hold is a set of variation zero.

Theorem 2.7. Let $f:[a,b] \to \mathbb{R}$ be McShane integrable on [a,b]. If g=f almost everywhere on [a,b], then g is McShane integrable on [a,b], and

$$\int_a^b g(x) \ dx = \int_a^b f(x) \ dx.$$

Proof: Let $E = \{x \in [a, b] : f(x) \neq g(x)\}$, and let

$$A = \int_a^b f(x) \ dx.$$

For each $i \in \mathbb{N}$, let $E_i = \{x \in E : i - 1 \le |f(x) - g(x)| < i\}$. Then $E = \bigcup_{i=1}^{\infty} E_i$. Let $\epsilon > 0$.

For each $i \in \mathbb{N}$, since E_i is of variation zero, there exists $\delta_i(\xi) > 0$ such that whenever $D_i = \{([u, v], \xi)\}$ is a McShane δ_i -fine division of [a, b], we have

$$(D_i)\sum_{\xi\in E_i}(v-u)=\left|(D_i)\sum\mathbf{1}_{E_i}(\xi)(v-u)\right|<\frac{\epsilon}{i2^i}.$$

By the definition of A, there exists $\delta_f(\xi) > 0$ such that whenever $D = \{([u, v], \xi)\}$ is a McShane δ_f -fine division of [a, b], we have

$$|(D)\sum f(\xi)(v-u)-A|<\epsilon.$$

Note that if $\xi \in E$, then there exists $i \in \mathbb{N}$ such that $\xi \in E_i$.

Define $\delta : [a, b] \to (0, +\infty)$ as the map $\delta(\xi) = \min\{\delta_f(\xi), \delta_i(\xi)\}$. Let $D = \{([u, v], \xi)\}$ be a McShane δ -fine division of [a, b].

Then

$$\begin{split} \left| (D) \sum g(\xi)(v-u) - A \right| & \leq \quad (D) \sum \left| g(\xi) - f(\xi) \right| (v-u) \\ & + \left| (D) \sum f(\xi)(v-u) - A \right| \\ & = \quad (D) \sum_{\xi \in E} \left| g(\xi) - f(\xi) \right| (v-u) \\ & + (D) \sum_{\xi \notin E} \left| g(\xi) - f(\xi) \right| (v-u) \\ & + \left| (D) \sum f(\xi)(v-u) - A \right| \\ & = \quad (D) \sum_{\xi \in E} \left| f(\xi) - g(\xi) \right| (v-u) \\ & + \left| (D) \sum f(\xi)(v-u) - A \right| \\ & \leq \quad (D) \sum_{\xi \in E} \left((D_i) \sum \left| f(\xi) - g(\xi) \right| (v-u) \right) \\ & + \left| (D) \sum f(\xi)(v-u) - A \right| \\ & \leq \quad (D) \sum_{\xi \in E} \left(i \cdot \frac{\epsilon}{i2^i} \right) + \left| (D) \sum f(\xi)(v-u) - A \right| \\ & \leq \quad \epsilon + \epsilon \\ & = \quad 2\epsilon. \end{split}$$

In view of Theorem 2.7, the condition " $f_n(x) \longrightarrow f(x)$ on [a,b]" in all convergence theorems for the McShane integral (see [8]) can now be replaced by " $f_n(x) \longrightarrow f(x)$ a.e. on [a,b]".

The proof of the following result can be found in [1].

Theorem 2.8. [1] If $f:[a,b] \to \mathbb{R}$ is McShane integrable on [a,b], then there exists a sequence $\{\varphi_n\}_{n=1}^{\infty}$ of step functions such that $\varphi_n \to f$ almost everywhere on [a,b] and

$$\lim_{n\to\infty} \int_a^b |\varphi_n - f| = 0.$$

Next, we will show that the characteristic function on a set X(f < c) is McShane integrable.

Theorem 2.9. Let c be any real number. If $f:[a,b] \to \mathbb{R}$ is McShane integrable on [a,b] and

$$X = X(f < c) = \{x \in [a, b] : f(x) < c\},\$$

then the characteristic function 1_X on X is McShane integrable.

Proof: By Theorem 2.8, there exists a sequence $\{\varphi_n\}_{n=1}^{\infty}$ of step functions such that $\varphi_n \to f$ on [a,b] except on a set S of variation zero. Let

$$X(\varphi_i < c - \frac{1}{k}) = \{x \in [a, b] : \varphi_i(x) < c - \frac{1}{k}\}$$

where $c \in \mathbb{R}$. Then for each i and k, the function $\mathbf{1}_{X(\varphi_i < c - \frac{1}{k})}$ is McShane integrable on [a, b], being a step function. Thus, $\mathbf{1}_{\bigcap_{i=n}^m X(\varphi_i < c - \frac{1}{k})}$ is also McShane integrable on [a, b], for any m. Let

$$Y = \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} X(\varphi_i < c - \frac{1}{k}).$$

Note that if $A \subseteq B$, then $\mathbf{1}_A \leq \mathbf{1}_B$. Hence, for any fixed n

$$\mathbf{1}_{\bigcap_{i=n}^{m+1} X(\varphi_i < c - \frac{1}{k})} \le \mathbf{1}_{\bigcap_{i=n}^m X(\varphi_i < c - \frac{1}{k})} , \quad \text{ for each } m \ge n;$$

since
$$\bigcap_{i=n}^{m+1} X(\varphi_i < c - \frac{1}{k}) \subseteq \bigcap_{i=n}^m X(\varphi_i < c - \frac{1}{k})$$
. It can be seen that for each $x \in [a, b]$

$$\lim_{m \to \infty} \mathbf{1}_{\bigcap_{i=n}^m X(\varphi_i < c - \frac{1}{k})}(x) = \mathbf{1}_{\bigcap_{i=n}^\infty X(\varphi_i < c - \frac{1}{k})}(x).$$

Hence, $\{1_{\bigcap_{i=n}^m X(\varphi_i < c - \frac{1}{k})}\}_m$ is a decreasing sequence of McShane integrable functions on [a, b]. Thus, by the Monotone Convergence Theorem, $1_{\bigcap_{i=n}^\infty X(\varphi_i < c - \frac{1}{k})}$ is McShane integrable on [a, b], for each n.

On the other hand, $\{1_{\bigcup_{n=1}^{m}\bigcap_{i=n}^{\infty}X(\varphi_{i}< c-\frac{1}{k})}\}_{m}$ is an increasing sequence of McShane integrable functions on [a,b] and for each $x\in [a,b]$

$$\lim_{m \to \infty} \mathbf{1}_{\bigcup_{n=1}^m \bigcap_{i=n}^\infty X(\varphi_i < c - \frac{1}{k})}(x) = \mathbf{1}_{\bigcup_{n=1}^\infty \bigcap_{i=n}^\infty X(\varphi_i < c - \frac{1}{k})}(x).$$

Again, by the Monotone Convergence Theorem, $1_{\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} X(\varphi_i < c - \frac{1}{k})}$ is McShane integrable on [a, b].

Similarly, $\{1_{\bigcup_{k=1}^m \bigcup_{n=1}^\infty \bigcap_{i=n}^\infty X(\varphi_i < c - \frac{1}{k})}\}_m$ is an increasing sequence of McShane integrable functions on [a,b] and for each $x \in [a,b]$

$$\lim_{m\to\infty}\mathbf{1}_{\bigcup_{k=1}^m\bigcup_{n=1}^\infty\bigcap_{i=n}^\infty X(\varphi_i< c-\frac{1}{k})}(x)=\mathbf{1}_{\bigcup_{k=1}^\infty\bigcup_{n=1}^\infty\bigcap_{i=n}^\infty X(\varphi_i< c-\frac{1}{k})}(x)=\mathbf{1}_Y;$$

and hence, by the Monotone Convergence Theorem, 1_Y is McShane integrable on [a, b].

It can be seen that $X \setminus S = Y \setminus S$, implying that $X \setminus Y \subseteq S$. Hence, $X \setminus Y$ is also a set of variation zero. Therefore, the characteristic function $\mathbf{1}_X$ on X is McShane integrable. \square

Since $\{x \in [a,b]: f(x) \geq c\} = [a,b] \setminus \{x \in [a,b]: f(x) < c\}$, we remark from Theorem 2.9 that the characteristic function $\mathbf{1}_{X(f \geq c)}$ on $\{x \in [a,b]: f(x) \geq c\}$ is also McShane integrable. Similarly, $\mathbf{1}_{X(f>c)}$ and $\mathbf{1}_{X(f\leq c)}$ are McShane integrable. Furthermore, if X is a countable union of sets of the forms:

$$\{x \in [a,b] : f(x) < c\}, \ \{x \in [a,b] : f(x) \ge c\},$$
$$\{x \in [a,b] : f(x) > c\}, \ \text{or} \ \{x \in [a,b] : f(x) \le c\},$$

then $\mathbf{1}_X$ is McShane integrable.

3 Main Results

Here, we will state and prove Egoroff's Theorem without using concepts in measure theory.

Theorem 3.1. If $\{f_n\}$ is a sequence of McShane integrable functions on [a,b] and $f_n(x) \to f(x)$ as $n \to \infty$ a.e. on [a,b], then given $\epsilon > 0$ and $\delta > 0$ there exists an integrable set $A \subseteq [a,b]$ with $m(A) < \delta$ and a positive integer N such that for each $x \in [a,b] \setminus A$ and each $n \ge N$, we have

$$|f_n(x) - f(x)| < \epsilon.$$

Proof: We may assume that $\lim_{n\to\infty} f_n(x) = f(x)$ on [a,b]. Let $\epsilon > 0$ and

$$G_i = \{x \in [a,b] : |f_i(x) - f(x)| \ge \epsilon\}.$$

For each $n \in \mathbb{N}$, let

$$E_n = \bigcup_{i=n}^{\infty} G_i = \{x \in [a,b] : |f_i(x) - f(x)| \ge \epsilon \text{ for some } i \ge n\}.$$

Since $E_{n+1} \subseteq E_n$, Theorem 2.9 implies that $\{1_{E_n}\}_n$ is a monotone decreasing sequence of McShane integrable functions.

Let $x \in [a, b]$. By the convergence of $\{f_n(x)\}$ to f(x), there exists a positive integer N_x such that $x \notin E_n$, and consequently $\mathbf{1}_{E_n}(x) = 0$, for all $n \geq N_x$. Thus,

$$\lim_{n\to\infty} \mathbf{1}_{E_n}(x) = 0.$$

By the Monotone Convergence Theorem,

$$\lim_{n\to\infty} m(E_n) = \lim_{n\to\infty} (\mathcal{M}) \int_a^b \mathbf{1}_{E_n} = 0.$$

Thus, given $\delta > 0$ there exists a positive integer N such that $m(E_N) < \delta$. Take

$$A = E_N = \{x \in [a, b] : |f_i(x) - f(x)| \ge \epsilon \text{ for some } i \ge N\}.$$

Note that

$$[a,b] \setminus A = [a,b] \setminus E_N = \{x \in [a,b] : |f_i(x) - f(x)| < \epsilon \text{ for every } i \ge N\}.$$

Hence, for each $x \in [a, b] \setminus A$ and $n \ge N$, we have

$$|f_n(x) - f(x)| < \epsilon.$$

The following is Egoroff's Theorem.

Corollary 3.2. (Egoroff's Theorem) If $\{f_n\}$ is a sequence of McShane integrable functions on [a,b] and $f_n(x) \to f(x)$ as $n \to \infty$ a.e. on [a,b], then given $\delta > 0$ there exists a subset $A \subseteq [a,b]$ with $m(A) < \delta$ such that $\{f_n\}$ converges to f uniformly on $[a,b] \setminus A$.

Proof: Let $\delta > 0$. By Theorem 3.1, for each n there exists an integrable set $A_n \subseteq [a,b]$ with $m(A_n) < \frac{\delta}{2^n}$ and a positive integer K_n such that for each $x \in [a,b] \setminus A_n$ and each $k \geq K_n$, we have

$$|f_k(x) - f(x)| < \frac{1}{n}.$$

We may assume that $\{K_n : n \in \mathbb{N}\}$ is increasing. Let $A = \bigcup_{n=1}^{\infty} A_n$. Then $A \subseteq [a, b]$ is an integrable set and

$$m(A) = m\Big(\bigcup_{n=1}^{\infty} A_n\Big) \le \sum_{n=1}^{\infty} m(A_n) < \sum_{n=1}^{\infty} \frac{\delta}{2^n} = \delta.$$

We will now show that $f_n \to f$ uniformly on $[a,b] \setminus A$. Let $\epsilon > 0$. Then there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \epsilon$. Corresponding to n_0 , there exists $K_{n_0}^* \in \mathbb{N}$ such that for all $k \geq K_{n_0}$ and $x \in [a,b] \setminus A_{n_0}$, we have

$$|f_k(x) - f(x)| < \frac{1}{n_0} < \epsilon$$
.

Note that $[a,b] \setminus A \subseteq [a,b] \setminus A_{n_0}$. Hence, the result follows:

The following result is a special version of Egoroff's Theorem.

Corollary 3.3. If $\{f_n\}$ is a sequence of McShane integrable functions on [a,b] and $f_n(x) \to f(x)$ as $n \to \infty$ a.e. on [a,b], then given $\delta > 0$ there exists an open set $G \subseteq [a,b]$ with $m(G) < \delta$ such that $\{f_n\}$ converges to f uniformly on $[a,b] \setminus G$.

Proof: Let $\delta > 0$. By Corollary 3.2, there exists a subset $A \subseteq [a, b]$ with $m(A) < \frac{\delta}{2}$ such that $\{f_n\}$ converges to f uniformly on $[a, b] \setminus A$. By Theorem 2.4, there exists an open set $G \subseteq [a, b]$ such that $A \subseteq G$ and

$$(\mathcal{M})\int_a^b \mathbf{1}_{G \setminus A}(x) \ dx < \frac{\delta}{2},$$

that is, $m(G \setminus A) < \frac{\delta}{2}$. Hence, we have

$$\begin{split} m(G) &= (\mathcal{M}) \int_a^b \mathbf{1}_G(x) \ dx \\ &= (\mathcal{M}) \int_a^b \mathbf{1}_A(x) \ dx + (\mathcal{M}) \int_a^b \mathbf{1}_{G \searrow A}(x) \ dx \\ &= m(A) + m(G \diagdown A) \\ &< \frac{\delta}{2} + \frac{\delta}{2} \\ &= \delta. \end{split}$$

Moreover, $[a,b] \setminus G \subseteq [a,b] \setminus A$, thus $\{f_n\}$ also converges to f uniformly on $[a,b] \setminus G$. \square

References

- [1] T. S. Chew, The Riemann-type Integral that Includes Lebesgue-Stieltjes and Stochastic Integrals, Lecture, Chulalongkorn University, 2004.
- [2] P. Y. Lee, Lanzhou Lectures on Henstock Integration Vol. 2, World Scientific Publishing Co., 1989.
- [3] H. L. Royden, Real Analysis 3ed, Macmillan Publishing Company, 1989.
- [4] C. H. Yang, Measure Theory and the Henstock integral, Acad. Exer., NUS, Singapore, 1997.

- [5] J. H. Ma, S. Y. Wen and Z. Y. Wen, Egoroff's theorem and maximal run length, *Monatshefte fur MathematiK* **151** (4) (2007) 287-292.
- [6] J. Kuwabe, The Egorff property and Egoroff theorem in Riesz space-valued nonadditive measure theory, Fuzzy Sets and systems 158 (1) (2007) 50-57.
- [7] M. Yasuda, On Egoroff's theorems on finite monotone nonadditive measure space, *Fuzzy Sets and Systems* **153** (1) (2005) 71-78.
- [8] R. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, American Mathematical Society, 1994.