MATIMYAS MATEMATIKA Journal of the Mathematical Society of the Philippines
ISSN 0115-6926 Vol. 32 No. 2 (2009) pp. 13-20

McShane Integrability and Egoroff’s Theorem

JuLius V. BENITEZ!
Department of Mathematics
MSU-Iligan Institute of Technology
Iligan City, Philippines
Julius.benitez@g.msuiit. edu.ph

FERDINAND P. JAMIL
Department of Mathematics
MSU-Iligan Institute of Technology
Iligan City, Philippines
ferdinand.jamil@g.msuiit. edu.ph

CHEW TUAN SENG
Department of Mathematics
National University of Singapore
Singapore
matcts@math.nus. edu.sg

Abstract

In this paper, we will give an alternative proof of Egoroff’s Theorem without using
concepts in measure theory.
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1 Introduction

In classical measure theory, Egoroff’s theorem establishes the implication of pointwise con-
vergence of a sequence of measurable functions to uniform convergence. The usual proof
of this theorem uses concepts in measure theory. In 1910, Carlo Severini gave the first
proof. A year later, Dmitri Egorov independently published his results and the theorem
became known under his name, after which many other versions and alternative proofs of
the theorem arose (see [5, 6, 7]).

In the late 1960s, the McShane integral was introduced by E.J. McShane to overcome
the difficulty of the Henstock integral as a nonabsolute integral. It is Riemann-type with
the property: A function is McShane integrable if and only if its absolute value function is
McShane integrable [8]. As a result of this property, the McShane integral is equivalent to
the Lebesgue integral [1].

In this paper, we will give a version of Egoroff’s Theorem using concepts in McShane
integrability.

!Research funded by the Commission on Higher Education, Philippines



14 JuLius V. BENITEZ, FERDINAND P. JAMIL AND CHEW TUAN SENG

2 Preliminaries

Let us revisit the following definitions.

Definition 2.1. A function f : [a,b] — R is said to be McShane integrable to A on [a, b]
if for each € > 0, there exists 4(£) > 0 on [a, b] such that whenever D = {([u,v],£)} is a
McShane ¢-fine division of [a, b], we have

(D)X FO@-w) - 4] <e
Recall that by a McShane é-fine division D = {([u,v];€)} of [a,b] we mean that [u,v] C

(E—=0(8),&+6(8)). If f : [a,b] — R is McShane integrable to A, we write A = M)/ f(z)dz,
and call A as the McShane integral of f on [a, b].

In what follows, unless 0therw1se stated all integrals referred to are McShane integrals,
and we write f f(z)dz = f f(z

Definition 2.2. Let E C R. The characteristic function 1g on E is defined by

1n— 1, "if z€F,
E=Y 0, ifz¢E.

We now introduce the concept of an integrable set (see [4]).

Definition 2.3. Let B be the family of subsets £ C R such that 1 En[a,b] 18 McShane
integrable on [a, b] for all closed intervals [a,b] in R. Let E € B. If E C [a, b], then define

b
m(E) :/ 1p(z) dz.
If E ¢ [a,b], define
m(E) = lim m(E N [-n,n]).
We refer to E as an integrable set and B the collection of all integrable sets in R.

Yang in [4] showed that integrable sets are actually Lebesque measurable sets. In the
same paper, Yang also showed that if {E,, : n € N} C B is a countable collection of pairwise
disjoint integrable sets, then | Jo.; E, is an integrable set and

Hence, one can verify that if {E, : n € N} C B is a countable collection of integrable sets,
then (J,-, E, is an integrable set and

m( G En) < im(E

n=1 n=1
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The following result and its proof can be found in [4].

Theorem 2.4. [4] If A C [a,b] is an integrable set, then for each € > 0 there exists an open
set G C [a,b] such that A C G and

b
/ IG\A(.’B) dr < e.

Definition 2.5. An integrable set E C R is said to have variation zero if

/ab 1g(z) dz = 0.

It is worth noting that a subset of a set of variation zero is again of variation zero.

Definition 2.6. A property is said to hold almost everywhere (abbreviated a.e.) on A if
the set of points in A where it fails to hold is a set of variation zero.

Theorem 2.7. Let f : [a,b] — R be McShane integrable on [a,b]. If g = f almost everywhere
on [a,b], then g is McShane integrable on [a,b], and

bg(m) d:c;—- bf(:c) dzx.
J oo de= |

Proof: Let E = {z € [a,b] : f(z) # g(z)}, and let
A= /b f(z) dz.

For each i € N, let E; = {z € E:1— 1< |f(z) — g(z)| < i}. Then E = | | E;. Let € > 0.

i=1
For each i € N, since E; is of variation zero, there exists §;(¢) > 0 such that whenever
D; = {([u,v],£)} is a McShane 6;-fine division of [a, b], we have

(D3) Y (=) = |(D) 315 () - w)| < =
§EE;

By the definition of A, there exists §7(£) > 0 such that whenever D = {([u,v],£)} is a
McShane 6 ¢-fine division of [a, b], we have

()Y 7€) —u) - 4] <e

Note that if £ € E, then there exists ¢ € N such that £ € E;.
Define ¢ : [a,b] — (0,+00) as the map 6(¢) = min{d;{€),8;(£)}. Let D = {([u,v],£)} be
a McShane ¢-fine division of [a, b].
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Then

(DY g@w-uw) -4 < @) |s(€) - F©)|(v - )
DY £Ow-w -4
= (D)) |9®) - Ol ~w)

{EE

+(D) > |9(8) — £(&)|(v —u)
§¢E

+(D) Y £ -w - 4]
= D) 1f©) ~9©|v~w

£EE
D)X £ @ - - 4|
(D) ((P) 32176 - 9(6)| (v —w)

£EE
+HD Y ©Ow-u -4

< DY (i) + DY FO@-u) -4
{EE

< €+e€
= 2e.

IN

O
In view of Theorem 2.7, the condition “f,(z) — f(z) on [a,b]” in all convergence
theorems for the McShane integral (see [8]) can now be replaced by “f,(z) — f(z) a.e. on
[a,b]”.
The proof of the following result can be found in [1].

‘Theorem 2.8. [1] If f : [a,b] — R is McShane integrable on [a,b], then there exists a
sequence {pn}5L, of step functions such that ¢, — f almost everywhere on [a,b] and

b
lim lon — f] = 0.

—
n—oo a

Next, we will show that the characteristic function on a set X(f < ¢) is McShane
integrable.

Theorem 2.9. Let ¢ be any real number. If f : [a,b] — R is McShane integrable on [a,b]
and

X=X(f<c)={z€a,b: f(z) <c},
then the characteristic function 1x on X is McShane integrable.

Proof: By Theorem 2.8, there exists a sequence {¢,}22, of step functions such that ¢, — f
on [a, b] except on a set S of variation zero. Let

X(pi<c—1)={z€[a,b]: pi(z) <c— £}
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where ¢ € R. Then for each i and k, the function 1 X(pi<c—%) 18 McShane integrable on
[a,b], being a step function. Thus, 1am  X(pi<c—1) is also McShane integrable on [a, b], for

any m. Let
(o) (oo} o0

Y= U U ﬂX(goi<c—%).'

k=1n=1li=n

Note that if A C B, then 14 < 15. Hence, for any fixed n

ln?:;lx(wq_%) < 1nm X(pi<e—1) » for each m >mn;
m+1 m '
since ﬂ X(pi<c—3)C ﬂ X(pi < ¢c—%). It can be seen that for each z € [a, b]
i=n i=n

Adm Iam  x(pice-1) (@) =1nm x(pce1)(@)-

Hence, {lﬂl';n X(pi<e—1i )}m is a decreasing sequence of McShane inﬁegrable functions on
[a,b]. Thus, by the Monotone Convergence Theorem, 1ne | X(pi<e—1) is McShane integrable
on [a, b], for each n.

On the other hand, {IUT=1 NZn X(pi<e—% y}m is an increasing sequence of McShane in-
tegrable functions on [a, b] and for each z € [a, ]

Hm Lur, N, X(ei<e- ) @) = 1y, Nz, X(pice- 1) (@)-

m—00 n=11 li=n

Again, by the Monotone Convergence Theorem, lum=1 N2 X(ps<c—1) is McShane integrable
on [a, b].

Similarly, {IUL"=1 U, N2 X (i <ok )}m is an increasing sequence of McShane integrable
functions on [a, b] and for each z € [a, b]

A Lgm U, N2, X(ece- 1) (@) = 1y, s, e, X(oi<e— ) (@) = 1v;

and hence, by the Monotone Convergence Theorem, 1y is McShane integrable on [a, b].
It can be seen that X \.S = Y\ S, implying that X\Y C S. Hence, X\Y is also a set
of variation zero. Therefore, the characteristic function 1 x on X is McShane integrable. O

Since {z € [a,8] : f(z) > ¢} = [a,b]\{z € [a,}] : f(z) < ¢}, we remark from Theorem
2.9 that the characteristic function 1x(s>¢) on {z € [a,b] : f(z) > ¢} is also McShane
integrable. Similarly, 1x(fs¢) and 1 X(f<c) are McShane integrable. Furthermore, if X is a
countable union of sets of the forms:

{z €la,b]: f(z) <c}, {z €la,b]: f(z)>c},

{z €la,b]: f(z) >c}, or {z€lab]: f(z) <c},
then 1x is McShane integrable.
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3 Main Results

Here, we will state and prove Egoroff’s Theorem without using concepts in measure theory.

Theorem 3.1. If {f,.} is a sequence of McShane integrable functions on [a,b] and fn(z) —
f(z) as n — oo a.e. on [a,b], then given € > 0 and § > 0 there erists an integrable set
A C [a,b] with m(A) < & and a positive integer N such that for each x € [a,b]\ A and each

n > N, we have
|fa(z) — f(2)] <€

Proof: We may assume that nlm;o fa(z) = f(z) on [a,b]. Let e > 0 and

G = {zelab:|fi@) - f@)>eh
For each n € N, let
En = D Gi = {z € [a,b] : | fi(z) — f(z)| > € for some i > n}.

Since E,41 C E,, Theorem 2.9 implies that {1g, }» is a monotone decreasing sequence of
McShane integrable functions.

Let z € [a,b]. By the convergence of {f, (m)} to f(z), there exists a positive integer N,
such that z ¢ E,, and consequently 1g, (z) =0, for all n > N,. Thus,

lim 1g (z)=0.
n—00
By the Monotone Convergence Theorem,
b
lim m(E,) = lim (M)/ 1g, =0.
n—00 n—00 a
Thus, given § > 0 there exists a positive integer N such that m(Ey) < 4. Take
A=Ey={z €[a,b]:|fi(z) — f(z)| > € for somei> N}.
Note that
[a;b]NA = [a,b]\En = {z € [a,}] : | fi(z) — f(z)| < € for every i > N}.
Hence, for each z € [a,b]\A and n > N, we have

|fn(z) — f(2)] <e.

O
The following is Egoroff’s Theorem.

Corollary 3.2. (Egoroff’s Theorem) If {f,} is a sequence of McShane integrable func-
tions on [a,b] and f,(z) — f(z) as n — oo a.e. on [a,b], then given § > O there ezists a
subset A C [a,b] with m(A) < & such that {fn} converges to f uniformly on [a,b]\ A.

Proof: Let § > 0. By Theorem 3.1, for each n there exists an integrable set A, C [a, b] with
m(An) < £ and a positive integer K,, such that for each = € [a,b]\ A, and each k > Kn,

we have
|fe(z) = F(@)] < &
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We may assume that {Kp : n € N} is increasing. Let A ={J;~; A,. Then A C [a,b] is an
integrable set and

m(A)zm([_jAn) Si_o:m(An) <§:2in = 4.

We will now show that f, — f uniformly on [a,b]\ A. Let ¢ > 0. Then there exists ng € N
such that ;ll— < e. Corresponding to ng, there exists Kj, € N such that for all k£ > Ky, and
z € [a,b]\ Ay, we have ‘

[fi(2) = f(2)| < & <e

Note that [a,b]\A C [a,b]\ Apn,. Hence, the result follows. O

The following result is a special version of Egoroff’s Theorem.

Corollary 3.3. If {fn} is a sequence of McShane integrable functions on [a,b] and f,(z) —
f(z) as n — oo a.e. on [a,b], then given § > O there exists an open set G C [a,b] with
m(G) < d such that {f,} converges to f uniformly on [a,b]\G.

Proof: Let § > 0. By Corollary 3.2, there exists a subset A C [a,b] with m(4) < ¢ such
that {f»} converges to f uniformly on [a,b]\ A. By Theorem 2.4, there exists an open set
G C [a,b] such that A C G and

b
(M) / lowu() dz < 3,

that is, m(G~A) < 2. Hence, we have
b
m@) = (M) / 16(z) do

b b
- (M)/ 1a(z) d:c+(M)/ lowa(z) de
= m(A) +m(G\A)

N| S,

+

SN,

Moreover, [a,b]\G C [a,b]\ A, thus {f,} also converges to f uniformly on [a, b~ G. O
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