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Abstract

We derive some convolution-type identities for the (r, β)-Stirling numbers using the
combinatorics of A-tableaux and, consequently, obtain interesting identities for some
known Stirling-type numbers.
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1 Introduction

As defined in [8], an A-tableau is a list φ of column c of a Ferrer’s diagram of a partition λ(by
decreasing order of length) such that the lengths |c| are part of the sequence A = (ai)i≥0, a
strictly increasing sequence of nonnegative integers.

Note that an A-tableau can also be generated by fixing the number of columns whose
lengths are in a sequence A. For example, the A-tableaux with exactly 3 columns whose
lengths are part of A = {1, 2, 3, 4} can be given in terms of multisets whose entries are
column lengths (instead of columns) as follows

{4, 4, 4} {4, 4, 3} {4, 4, 2} {4, 4, 1} {4, 3, 3} {4, 3, 2} {4, 3, 1}
{4, 2, 2} {4, 2, 1} {4, 1, 1} {3, 3, 3} {3, 3, 2} {3, 3, 1} {3, 2, 2}
{3, 2, 1} {3, 1, 1} {2, 2, 2} {2, 2, 1} {2, 1, 1} {1, 1, 1}

Figure 2 below shows five of these tableaux corresponding to the multisets {4, 4, 4},
{4, 4, 3}, {3, 3, 3}, {3, 3, 2}, and {2, 2, 2}, respectively.

Figure 2. Examples of A-tableaux with exactly 3 columns.

This implies that the number of such A-tableaux is the same as the number of 3-element
multisubsets of the multiset {∞ · 1,∞ · 2,∞ · 3,∞ · 4} which is given by H4

3 = 20 (see [4]).
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In general, the number of r-element multisubsets of a multiset M = {∞·a1,∞·a2, . . . ,∞·
an} as given in [4] is

Hn
r =

(
r + n− 1

r

)
.

Thus, if TA(k, r) denotes the set of A-tableaux with r columns whose lengths, not necessarily
distinct, are in the set {0, 1, 2, . . . , k}, then

|TA(k, r)| =
(
r + k

r

)
. (1)

In this paper, we express the (r, β)-Stirling numbers in terms of the weights of the
columns of A-tableaux and derive some convolution-type identities using the combinatorics
of A-tableaux.

2 (r, β)-Stirling numbers and Their Explicit Formula

The (r, β)-Stirling numbers, denoted by
〈
n
k

〉
β,r

were defined by means of the following
linear transformation:

tn =
n∑
k=0

〈n
k

〉
β,r

(t− r)β,k

where

(t−r)β,k =
k−1∏
i=0

(t−r−iβ).

(t)β,k is called the generalized factorial of t with increment β, and as a convention
(t)β,k = 0 if k ≤ 0.

〈
n
k

〉
β,r

are certain generalization of all second kind Stirling-type
numbers. For instance, the classical Stirling numbers, the noncentral Stirling numbers, and
the r-Stirling numbers of the second kind can be expressed in terms of

〈
n
k

〉
β,r

as follows:

〈n
k

〉
1,0

= S(n, k), classical Stirling numbers of the second kind (2)〈n
k

〉
1,−a

= S(a)(n, k), noncentral Stirling numbers of the second kind (3)〈n
k

〉
1,r

=
{
n+ r

k + r

}
r

, r-Stirling numbers of the second kind (4)

All other Stirling-type numbers of the second kind, like the weighted Stirling numbers and
the degenerate Stirling numbers, can also be expressed in terms of

〈
n
k

〉
β,r

.
Several properties of

〈
n
k

〉
β,r

like the generating functions, recurrence relations, and ex-
plicit formulas were already established by R. Corcino in [6]. One of these properties is the
rational generating function given as follows∑

n≥0

〈n
k

〉
β,r

tn =
tk∏k

j=0[1− (βj + r)t ]
. (5)
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Note that (4) can be rewritten as

∑
n≥k

〈n
k

〉
β,r

tn−k =
1∏k

j=0 [1− (βj + r)t]
=

k∏
j=0

(
1

1− (βj + r)t

)
.

Applying Newton’s Binomial Theorem [4] we get

∑
n≥k

〈n
k

〉
β,r

tn−k =
k∏
j=0

∑
cj≥0

(βj + r)cj tcj

 .

Rewriting the product of sums as sum of products (see [5] page 40), we obtain

∑
n≥k

〈n
k

〉
β,r

tn−k =
∑

c0,c1,...,ck≥0

 k∏
j=0

(βj+ r)cj tcj


=

∑
n≥k

 ∑
c0+c1+...+ck=n−k

 k∏
j=0

(βj+ r)cj

 tn−k.

Identifying the coefficients of tn−k, we have the following explicit formula for
〈
n
k

〉
β,r

〈n
k

〉
β,r

=
∑

c0+c1+...+ck=n−k

k∏
j=0

(βj + r)cj ,

which can be written further as stated in the following theorem.

Theorem 1. The (r, β)-Stirling Numbers
〈
n
k

〉
β,r

equals

〈n
k

〉
β,r

=
∑

0≤j1≤j2≤...≤jn−k≤k

[
n−k∏
i=1

(jiβ + r)

]
.

Theorem 1 is essential in relating the (r, β)-Stirling numbers to the concept of A-tableau.
Let ω be a function from the set of nonnegative integers N∗ to a ring K. Suppose Φ is an
A-tableau with r columns of lengths |c| ≤ h. Then, we set

ωA(Φ) =
∏
c∈Φ

ω(|c|).

Note that Φ might contain a finite number of columns whose lengths are zero since 0 ∈ A =
{0, 1, 2, . . . , k} and if ω(0) 6= 0.

From this point onward, whenever an A-tableau is mentioned, it is always associated
with the sequence A = {0, 1, 2, . . . , k}.

We are now ready to mention the following theorem.
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Theorem 2. Let ω : N∗ → K be the column weight according to length which is defined by
ω(|c|) = |c|β + r where |c| is the length of column c of an A-tableau in TA(k, n− k). Then〈n

k

〉
β,r

=
∑

φ∈TA(k,n−k)

∏
c∈φ

ω(|c|).

Proof: Let φ be an A-tableau in TA(k, n − k). Then φ has exactly n−k columns, say
c1, c2, . . . , cn−k whose lengths are j1, j2, . . . , jn−k, respectively. Now for each column ci ∈ φ,
i = 1, 2, . . . , n−k we have |ci| = ji and ω(|ci|) = jiβ + r. Then

∏
c∈φ

ω(|c|) =
n−k∏
i=1

ω(|ci|) =
n−k∏
i=1

(jiβ + r),

and hence ∑
φ∈TA(k,n−k)

∏
c∈φ

ω(|c|) =
∑

0≤j1≤j2≤...≤jn−k≤k

n−k∏
i=1

(jiβ + r).

Using Theorem 1, we obtain the desired result. �

3 Convolution-Type Identities for
〈
n
k

〉
β,r

Suppose

φ1 is a tableau with k −m columns whose lengths are in the set
{0, 1, . . . ,m}, and

φ2 be a tableau with n− k − j columns whose lengths are in the
set {m+ 1,m+ 2, . . . ,m+ j + 1}

Then
φ1 ∈ TA1(m, k −m) and φ2 ∈ TA2(j, n− k − j)

where A1 = {0, 1, . . . ,m} and A2 = {m + 1,m + 2, . . . ,m + j + 1}. Notice that by joining
the columns of φ1 and φ2, we obtain an A-tableau φ with n−m− j columns whose lengths
are in the set A = A1 ∪A2 = {0, 1, . . . ,m+ j + 1}. That is, φ ∈ TA(m+ j + 1, n−m− j).
Then, ∑
φ∈TA(m+j+1,n−m−j)

ωA(φ)

=
n−j∑
k=m

 ∑
φ1∈TA1 (m, k−m)

ωA1(φ1)


 ∑
φ2∈TA2 (j, n−k−j)

ωA2(φ2)

 .
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Note that ∑
φ2∈TA2 (j, n−k−j)

ωA2(φ2) =
∑

φ2∈TA2 (j, n−k−j)

∏
c∈φ2

(|c|β + r)

=
∑

m+1≤g1≤...≤g n−k−j≤ m+j+1

n−k−j∏
i=1

(giβ + r)

=
∑

0≤g1≤...≤g n−k−j≤j

n−k−j∏
i=1

(giβ + (m+ 1)β + r).

Thus,

∑
0≤g1≤...≤gn−m−j≤m+j+1

n−m−j∏
i=1

(giβ + r)

=
n−j∑
k=m

 ∑
0≤g1≤...≤gk−m≤m

k−m∏
i=1

(giβ+r)


 ∑

0≤g1≤...≤gn−k−j≤j

n−k−j∏
i=1

(giβ+(m+1)β+r)

.
By Theorem 1, we obtain the following identity.

Theorem 3. The (r, β)-Stirling numbers satisfy the following second form of convolution
formula 〈

n+ 1
m+ j + 1

〉
β,r

=
n∑
k=0

〈
k

m

〉
β,r

〈
n− k
j

〉
β,(m+1)β+r

.

Note that when β = 1, Theorem 4 gives〈
n+ 1

m+ j + 1

〉
1,r

=
n∑
k=0

〈
k

m

〉
1,r

〈
n− k
j

〉
1,m+r+1

and by equation (3), we obtain the following corollary.

Corollary 1. The r-Stirling numbers of the second kind satisfy the following convolution-
type identity:{

n+ r + 1
m+ j + r + 1

}
r

=
n−j∑
k=m

{
k + r

m+ r

}
r

{
n− k +m+ r + 1
j +m+ r + 1

}
m+r+1

.

Moreover, if β = 1 and r = 0, then Theorem 4 becomes〈
n+ 1

m+ j + 1

〉
1,0

=
n∑
k=0

〈
k

m

〉
1,0

〈
n− k
j

〉
1,m+1

and by relations (1) & (3), we have the following corollary.
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Corollary 2. The Stirling numbers of the second kind satisfy the following identity:

S(n+ 1,m+ j + 1) =
n−j∑
k=m

S(k,m)
{
n− k +m+ 1
j +m+ 1

}
m+1

.

Also, with β = 1 and r = −a we have〈
n+ 1

m+ j + 1

〉
1,−a

=
n∑
k=0

〈
k

m

〉
1,−a

〈
n− k
j

〉
1,m−a+1

.

By (2) & (3) we obtain the succeeding corollary.

Corollary 3. The non-central Stirling numbers of the second kind satisfy the following
identity:

S(a)(n+ 1,m+ j + 1) =
n−j∑
k=m

S(a)(k,m)
{
n− k +m− a+ 1
j +m− a+ 1

}
m−a+1

.

If β = 0 and r = 1, Theorem 4 together with equation (3) of [6] gives(
n+ 1

m+ j + 1

)
=

n−j∑
k=m

(
k

m

)(
n− k
j

)
.

The next theorem provides another form of convolution-type identity.

Theorem 4. The (r, β)-Stirling numbers satisfy the following convolution-type identity:〈
m+ j

n

〉
β,r

=
n−j∑
k=m

〈m
k

〉
β,r

〈
j

n− k

〉
β,kβ+r

.

Proof: Let

φ1 be a tableau with m− k columns whose lengths are in
A1 = {0, 1, . . . , k}, and

φ2 be a tableau with j − n+ k columns whose lengths are in
A2 = {k, k + 1, . . . , n}.

Then φ1 ∈ TA1(k,m− k) and φ2 ∈ TA2(n− k, j − n+ k). Using the same argument above,
we can easily obtain the convolution formula. �

Setting β = 1, Theorem 5 yields〈
m+ j

n

〉
1,r

=
n−j∑
k=m

〈m
k

〉
1,r

〈
j

n− k

〉
1,k+r

,

which consequently gives the following corollary.
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Corollary 4. The r-Stirling numbers of the second kind satisfy the following convolution-
type identity {

m+ j + r

n+ r

}
r

=
n−j∑
k=m

{
m+ r

k + r

}
r

{
j + k + r

n+ r

}
k+r

.

Now, when r = 0, this gives the following corollary.

Corollary 5. The classical Stirling numbers of the second kind satisfy the following identity

S(m+ j, n) =
n−j∑
k=m

S(m, k)
{
j + k

n

}
k

.

Moreover, when β = 1 and r = −a we have

Corollary 6. The non-central Stirling numbers of the second kind satisfy the following
identity

S(a)(m+ j, n) =
n−j∑
k=m

S(a)(m, k)
{
j + k − a
n− a

}
k−a

.

It is worth mentioning that the identities in Corollaries 6-10 are not known in the litera-
ture of the classical Stirling numbers, r-Stirling numbers, and non-central Stirling numbers
of the second kind.
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