Some Convolution-Type Identities and the Combinatorics of A-Tableau

Roberto B. Corcino and Maribeth B. Montero
Department of Mathematics
Mindanao State University
Marawi City 9700, Philippines

Abstract

We derive some convolution-type identities for the (r, β)-Stirling numbers using the combinatorics of A-tableaux and, consequently, obtain interesting identities for some known Stirling-type numbers.

Keywords: (r, β)-Stirling numbers, A-tableau, convolution formula

1 Introduction

As defined in [8], an A-tableau is a list ϕ of column c of a Ferrer's diagram of a partition λ (by decreasing order of length) such that the lengths $|c|$ are part of the sequence $A=\left(a_{i}\right)_{i \geq 0}$, a strictly increasing sequence of nonnegative integers.

Note that an A-tableau can also be generated by fixing the number of columns whose lengths are in a sequence A. For example, the A-tableaux with exactly 3 columns whose lengths are part of $A=\{1,2,3,4\}$ can be given in terms of multisets whose entries are column lengths (instead of columns) as follows

$\{4,4,4\}$	$\{4,4,3\}$	$\{4,4,2\}$	$\{4,4,1\}$	$\{4,3,3\}$	$\{4,3,2\}$	$\{4,3,1\}$
$\{4,2,2\}$	$\{4,2,1\}$	$\{4,1,1\}$	$\{3,3,3\}$	$\{3,3,2\}$	$\{3,3,1\}$	$\{3,2,2\}$
$\{3,2,1\}$	$\{3,1,1\}$	$\{2,2,2\}$	$\{2,2,1\}$	$\{2,1,1\}$	$\{1,1,1\}$	

Figure 2 below shows five of these tableaux corresponding to the multisets $\{4,4,4\}$, $\{4,4,3\},\{3,3,3\},\{3,3,2\}$, and $\{2,2,2\}$, respectively.

Figure 2. Examples of A-tableaux with exactly 3 columns.

This implies that the number of such A-tableaux is the same as the number of 3 -element multisubsets of the multiset $\{\infty \cdot 1, \infty \cdot 2, \infty \cdot 3, \infty \cdot 4\}$ which is given by $H_{3}^{4}=20$ (see [4]).

In general, the number of r-element multisubsets of a multiset $M=\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \ldots, \infty\right.$. $\left.a_{n}\right\}$ as given in [4] is

$$
H_{r}^{n}=\binom{r+n-1}{r}
$$

Thus, if $T^{A}(k, r)$ denotes the set of A-tableaux with r columns whose lengths, not necessarily distinct, are in the set $\{0,1,2, \ldots, k\}$, then

$$
\begin{equation*}
\left|T^{A}(k, r)\right|=\binom{r+k}{r} \tag{1}
\end{equation*}
$$

In this paper, we express the (r, β)-Stirling numbers in terms of the weights of the columns of A-tableaux and derive some convolution-type identities using the combinatorics of A-tableaux.

$2(r, \beta)$-Stirling numbers and Their Explicit Formula

The (r, β)-Stirling numbers, denoted by $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{\beta, r}$ were defined by means of the following linear transformation:

$$
t^{n}=\sum_{k=0}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{\beta, r}(t-r)_{\beta, k}
$$

where

$$
(t-r)_{\beta, k}=\prod_{i=0}^{k-1}(t-r-i \beta)
$$

$(t)_{\beta, k}$ is called the generalized factorial of \mathbf{t} with increment β, and as a convention $(t)_{\beta, k}=0$ if $k \leq 0 .\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{\beta, r}$ are certain generalization of all second kind Stirling-type numbers. For instance, the classical Stirling numbers, the noncentral Stirling numbers, and the r-Stirling numbers of the second kind can be expressed in terms of $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{\beta, r}$ as follows:

$$
\begin{align*}
& \left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle_{1,0}=S(n, k), \text { classical Stirling numbers of the second kind } \tag{2}\\
& \left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle_{1,-a}=S_{(a)}(n, k), \text { noncentral Stirling numbers of the second kind } \tag{3}\\
& \left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle_{1, r}=\left\{\begin{array}{c}
n+r \\
k+r
\end{array}\right\}_{r}, r \text {-Stirling numbers of the second kind } \tag{4}
\end{align*}
$$

All other Stirling-type numbers of the second kind, like the weighted Stirling numbers and the degenerate Stirling numbers, can also be expressed in terms of $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{\beta, r}$.

Several properties of $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{\beta, r}$ like the generating functions, recurrence relations, and explicit formulas were already established by R . Corcino in [6]. One of these properties is the rational generating function given as follows

$$
\sum_{n \geq 0}\left\langle\begin{array}{l}
n \tag{5}\\
k
\end{array}\right\rangle_{\beta, r} t^{n}=\frac{t^{k}}{\prod_{j=0}^{k}[1-(\beta j+r) t]}
$$

Note that (4) can be rewritten as

$$
\sum_{n \geq k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{\beta, r} t^{n-k}=\frac{1}{\prod_{j=0}^{k}[1-(\beta j+r) t]}=\prod_{j=0}^{k}\left(\frac{1}{1-(\beta j+r) t}\right) .
$$

Applying Newton's Binomial Theorem [4] we get

$$
\sum_{n \geq k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{\beta, r} t^{n-k}=\prod_{j=0}^{k}\left(\sum_{c_{j} \geq 0}(\beta j+r)^{c_{j}} t^{c_{j}}\right)
$$

Rewriting the product of sums as sum of products (see [5] page 40), we obtain

$$
\begin{aligned}
\sum_{n \geq k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{\beta, r} t^{n-k} & =\sum_{c_{0}, c_{1}, \ldots, c_{k} \geq 0}\left[\prod_{j=0}^{k}(\beta j+r)^{c_{j}} t^{c_{j}}\right] \\
& =\sum_{n \geq k}\left\{\sum_{c_{0}+c_{1}+\ldots+c_{k}=n-k}\left[\prod_{j=0}^{k}(\beta j+r)^{c_{j}}\right]\right\} t^{n-k} .
\end{aligned}
$$

Identifying the coefficients of t^{n-k}, we have the following explicit formula for $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{\beta, r}$

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{\beta, r}=\sum_{c_{0}+c_{1}+\ldots+c_{k}=n-k} \prod_{j=0}^{k}(\beta j+r)^{c_{j}}
$$

which can be written further as stated in the following theorem.

Theorem 1. The (r, β)-Stirling Numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{\beta, r}$ equals

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{\beta, r}=\sum_{0 \leq j_{1} \leq j_{2} \leq \ldots \leq j_{n-k} \leq k}\left[\prod_{i=1}^{n-k}\left(j_{i} \beta+r\right)\right] .
$$

Theorem 1 is essential in relating the (r, β)-Stirling numbers to the concept of A-tableau. Let ω be a function from the set of nonnegative integers N^{*} to a ring K. Suppose Φ is an A-tableau with r columns of lengths $|c| \leq h$. Then, we set

$$
\omega_{A}(\Phi)=\prod_{c \in \Phi} \omega(|c|) .
$$

Note that Φ might contain a finite number of columns whose lengths are zero since $0 \in A=$ $\{0,1,2, \ldots, k\}$ and if $\omega(0) \neq 0$.

From this point onward, whenever an A-tableau is mentioned, it is always associated with the sequence $A=\{0,1,2, \ldots, k\}$.

We are now ready to mention the following theorem.

Theorem 2. Let $\omega: N^{*} \rightarrow K$ be the column weight according to length which is defined by $\omega(|c|)=|c| \beta+r$ where $|c|$ is the length of column c of an A-tableau in $T^{A}(k, n-k)$. Then

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{\beta, r}=\sum_{\phi \in T^{A}(k, n-k)} \prod_{c \in \phi} \omega(|c|)
$$

Proof: Let ϕ be an A-tableau in $T^{A}(k, n-k)$. Then ϕ has exactly $n-k$ columns, say $c_{1}, c_{2}, \ldots, c_{n-k}$ whose lengths are $j_{1}, j_{2}, \ldots, j_{n-k}$, respectively. Now for each column $c_{i} \in \phi$, $i=1,2, \ldots, n-k$ we have $\left|c_{i}\right|=j_{i}$ and $\omega\left(\left|c_{i}\right|\right)=j_{i} \beta+r$. Then

$$
\prod_{c \in \phi} \omega(|c|)=\prod_{i=1}^{n-k} \omega\left(\left|c_{i}\right|\right)=\prod_{i=1}^{n-k}\left(j_{i} \beta+r\right)
$$

and hence

$$
\sum_{\phi \in T^{A}(k, n-k)} \prod_{c \in \phi} \omega(|c|)=\sum_{0 \leq j_{1} \leq j_{2} \leq \ldots \leq j_{n-k} \leq k} \prod_{i=1}^{n-k}\left(j_{i} \beta+r\right)
$$

Using Theorem 1, we obtain the desired result.

3 Convolution-Type Identities for $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{\beta, r}$

Suppose
$\phi_{1} \quad$ is a tableau with $k-m$ columns whose lengths are in the set
$\{0,1, \ldots, m\}$, and
$\phi_{2} \quad$ be a tableau with $n-k-j$ columns whose lengths are in the

set $\{m+1, m+2, \ldots, m+j+1\}$

Then

$$
\phi_{1} \in T^{A_{1}}(m, k-m) \text { and } \phi_{2} \in T^{A_{2}}(j, n-k-j)
$$

where $A_{1}=\{0,1, \ldots, m\}$ and $A_{2}=\{m+1, m+2, \ldots, m+j+1\}$. Notice that by joining the columns of ϕ_{1} and ϕ_{2}, we obtain an A-tableau ϕ with $n-m-j$ columns whose lengths are in the set $A=A_{1} \cup A_{2}=\{0,1, \ldots, m+j+1\}$. That is, $\phi \in T^{A}(m+j+1, n-m-j)$. Then,
$\sum_{\phi \in T^{A}(m+j+1, n-m-j)} \omega_{A}(\phi)$

$$
=\sum_{k=m}^{n-j}\left\{\sum_{\phi_{1} \in T^{A_{1}}(m, k-m)} \omega_{A_{1}}\left(\phi_{1}\right)\right\}\left\{\sum_{\phi_{2} \in T^{A_{2}}(j, n-k-j)} \omega_{A_{2}}\left(\phi_{2}\right)\right\} .
$$

Note that

$$
\begin{aligned}
\sum_{\phi_{2} \in T^{A_{2}}(j, n-k-j)} \omega_{A_{2}}\left(\phi_{2}\right) & =\sum_{\phi_{2} \in T^{A_{2}}(j, n-k-j)} \prod_{c \in \phi_{2}}(|c| \beta+r) \\
& =\sum_{m+1 \leq g_{1} \leq \ldots \leq g_{n-k-j} \leq m+j+1} \prod_{i=1}^{n-k-j}\left(g_{i} \beta+r\right) \\
& =\sum_{0 \leq g_{1} \leq \ldots \leq g_{n-k-j} \leq j} \prod_{i=1}^{n-k-j}\left(g_{i} \beta+(m+1) \beta+r\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \sum_{0 \leq g_{1} \leq \ldots \leq g_{n-m-j} \leq m+j+1} \prod_{i=1}^{n-m-j}\left(g_{i} \beta+r\right) \\
& =\sum_{k=m}^{n-j}\left\{\sum_{0 \leq g_{1} \leq \ldots \leq g_{k-m} \leq m} \prod_{i=1}^{k-m}\left(g_{i} \beta+r\right)\right\}\left\{\sum_{0 \leq g_{1} \leq \ldots \leq g_{n-k-j} \leq j} \prod_{i=1}^{n-k-j}\left(g_{i} \beta+(m+1) \beta+r\right)\right\} .
\end{aligned}
$$

By Theorem 1, we obtain the following identity.

Theorem 3. The (r, β)-Stirling numbers satisfy the following second form of convolution formula

$$
\left\langle\begin{array}{c}
n+1 \\
m+j+1
\end{array}\right\rangle_{\beta, r}=\sum_{k=0}^{n}\left\langle\begin{array}{c}
k \\
m
\end{array}\right\rangle_{\beta, r}\left\langle\begin{array}{c}
n-k \\
j
\end{array}\right\rangle_{\beta,(m+1) \beta+r}
$$

Note that when $\beta=1$, Theorem 4 gives

$$
\left\langle\begin{array}{c}
n+1 \\
m+j+1
\end{array}\right\rangle_{1, r}=\sum_{k=0}^{n}\left\langle\begin{array}{c}
k \\
m
\end{array}\right\rangle_{1, r}\left\langle\begin{array}{c}
n-k \\
j
\end{array}\right\rangle_{1, m+r+1}
$$

and by equation (3), we obtain the following corollary.

Corollary 1. The r-Stirling numbers of the second kind satisfy the following convolutiontype identity:

$$
\left\{\begin{array}{c}
n+r+1 \\
m+j+r+1
\end{array}\right\}_{r}=\sum_{k=m}^{n-j}\left\{\begin{array}{c}
k+r \\
m+r
\end{array}\right\}_{r}\left\{\begin{array}{c}
n-k+m+r+1 \\
j+m+r+1
\end{array}\right\}_{m+r+1}
$$

Moreover, if $\beta=1$ and $r=0$, then Theorem 4 becomes

$$
\left\langle\begin{array}{c}
n+1 \\
m+j+1
\end{array}\right\rangle_{1,0}=\sum_{k=0}^{n}\left\langle\begin{array}{c}
k \\
m
\end{array}\right\rangle_{1,0}\left\langle\begin{array}{c}
n-k \\
j
\end{array}\right\rangle_{1, m+1}
$$

and by relations (1) \& (3), we have the following corollary.

Corollary 2. The Stirling numbers of the second kind satisfy the following identity:

$$
S(n+1, m+j+1)=\sum_{k=m}^{n-j} S(k, m)\left\{\begin{array}{c}
n-k+m+1 \\
j+m+1
\end{array}\right\}_{m+1}
$$

Also, with $\beta=1$ and $r=-a$ we have

$$
\left\langle\begin{array}{c}
n+1 \\
m+j+1
\end{array}\right\rangle_{1,-a}=\sum_{k=0}^{n}\left\langle\begin{array}{c}
k \\
m
\end{array}\right\rangle_{1,-a}\left\langle\begin{array}{c}
n-k \\
j
\end{array}\right\rangle_{1, m-a+1}
$$

By (2) \& (3) we obtain the succeeding corollary.

Corollary 3. The non-central Stirling numbers of the second kind satisfy the following identity:

$$
S_{(a)}(n+1, m+j+1)=\sum_{k=m}^{n-j} S_{(a)}(k, m)\left\{\begin{array}{c}
n-k+m-a+1 \\
j+m-a+1
\end{array}\right\}_{m-a+1}
$$

If $\beta=0$ and $r=1$, Theorem 4 together with equation (3) of [6] gives

$$
\binom{n+1}{m+j+1}=\sum_{k=m}^{n-j}\binom{k}{m}\binom{n-k}{j}
$$

The next theorem provides another form of convolution-type identity.

Theorem 4. The (r, β)-Stirling numbers satisfy the following convolution-type identity:

$$
\left\langle\begin{array}{c}
m+j \\
n
\end{array}\right\rangle_{\beta, r}=\sum_{k=m}^{n-j}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle_{\beta, r}\left\langle\begin{array}{c}
j \\
n-k
\end{array}\right\rangle_{\beta, k \beta+r}
$$

Proof: Let
$\phi_{1} \quad$ be a tableau with $m-k$ columns whose lengths are in $A_{1}=\{0,1, \ldots, k\}$, and
ϕ_{2} be a tableau with $j-n+k$ columns whose lengths are in $A_{2}=\{k, k+1, \ldots, n\}$.
Then $\phi_{1} \in T^{A_{1}}(k, m-k)$ and $\phi_{2} \in T^{A_{2}}(n-k, j-n+k)$. Using the same argument above, we can easily obtain the convolution formula.

Setting $\beta=1$, Theorem 5 yields

$$
\left\langle\begin{array}{c}
m+j \\
n
\end{array}\right\rangle_{1, r}=\sum_{k=m}^{n-j}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle_{1, r}\left\langle\begin{array}{c}
j \\
n-k
\end{array}\right\rangle_{1, k+r}
$$

which consequently gives the following corollary.

Corollary 4. The r-Stirling numbers of the second kind satisfy the following convolutiontype identity

$$
\left\{\begin{array}{c}
m+j+r \\
n+r
\end{array}\right\}_{r}=\sum_{k=m}^{n-j}\left\{\begin{array}{c}
m+r \\
k+r
\end{array}\right\}_{r}\left\{\begin{array}{c}
j+k+r \\
n+r
\end{array}\right\}_{k+r}
$$

Now, when $r=0$, this gives the following corollary.
Corollary 5. The classical Stirling numbers of the second kind satisfy the following identity

$$
S(m+j, n)=\sum_{k=m}^{n-j} S(m, k)\left\{\begin{array}{c}
j+k \\
n
\end{array}\right\}_{k} .
$$

Moreover, when $\beta=1$ and $r=-a$ we have
Corollary 6. The non-central Stirling numbers of the second kind satisfy the following identity

$$
S_{(a)}(m+j, n)=\sum_{k=m}^{n-j} S_{(a)}(m, k)\left\{\begin{array}{c}
j+k-a \\
n-a
\end{array}\right\}_{k-a}
$$

It is worth mentioning that the identities in Corollaries 6-10 are not known in the literature of the classical Stirling numbers, r-Stirling numbers, and non-central Stirling numbers of the second kind.

References

[1] A.Z. Broder, The r-Stirling Numbers, Discrete Math 49(1984), 241-259
[2] L. Carlitz, Degenerate Stirling Numbers, Berboulli and Eulerian Numbers, Utilitas Mathematica 15
[3] Ch.A. Charalambides and J. Singh, A review of the Stirling numbers, their generalization and statistical applications, Commun. Statist.-Theory Meth. 20(8) (1988), 2533-2595.
[4] C-C. Chen and K-M. Koh, Principles and Techniques in Combinatorics, World Scientific, 1992.
[5] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, The Netherlands, 1974.
[6] R.B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol.XIV, No.2(December 1999), 91-99.
[7] R.B. Corcino and L.C. Hsu, Leibniz's Formula and Convolution-type Identities, Matimyas Matematika, Vol.23, No.2(May 2000), 21-29.
[8] A. De Medicis and P. Leroux, Generalized Stirling Numbers, Convolution Formulae and p,q-Analogues, Can. J. Math 47(3) (1995), 474-499.
[9] M. Koutras, Non-Central Stirling Numbers and Some Applications, Discrete Math 42(1982), 73-79.
[10] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958.

