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Abstract

Two families of some cubic maps which realize not only unimodal cycles but also
bimodal cycles are studied. A class of bimodal cycles forced by (1342) is given.
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1 Introduction

1.1 Sharkovsky’s Theorem

In 1975 Li and Yorke published a famous paper “Period three implies chaos” [8]. Their main
result given below states that the presence of a periodic point with least period 3 forces the
presence of periodic points with all possible least periods.

Theorem 1.1 (Li-Yorke [8]) Let f be a continuous function from a closed interval I into
itself. Assume there is a point a ∈ I satisfying

f3(a) ≤ a < f(a) < f2(a).

Then (i) for any n ∈ R there is a periodic point of least period n in I, and (ii) there exists an
uncountable set of points without period, for which there is sensitive dependence on initial
conditions. Nowadays we call statuses (i) and (ii) chaotic in the sense of Li-Yorke.

However we have to note that before 1975, Sharkovsky [13] already obtained the results
which includes Theorem 1.1 (i) as a corollary. A brief history of the Sharkovsky’s theorem
is described in [4].

1.2 Extension of Sharkovsky’s order

Unfortunately, the classification of periodic orbits by least period only is very coarse. If we
look at the cyclic permutations (cycles) determined by periodic orbits, then the classification
is very fine but the results are much weaker than for periods. First let us define cycles as
follows.
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Definition 1.1 (cycle) A cycle of length n (an n-cycle) is any bijection (cyclic permuta-
tion) θ : {1, 2, . . . , n} → {1, 2, . . . , n} such that 1, θ(1), θ2(1), . . . , θn−1(1) are all distinct.
Any periodic orbit of f with least period n:

O = {x1, x2, . . . , xn},

where x1 < x2 < · · · < xn can be identified with a suitable cycle θ if

f i(x1) = xθi(1) for i = 0, 1, . . . , n− 1.

Let us denote the set of all cycles of length n by Cn. By a cycle we mean any element of
C := ∪n≥1Cn.

Definition 1.2 (forcing relation on cycles, →) Let θ, η ∈ C be cycles. Then define
θ → η (θ forces η) if and only if for every continuous function f from a closed interval I
into itself, if f has an orbit of type θ then f also has an orbit of type η.

(1342)
↙ ↘

(1234) (1243) (1432)
↓ ↙ ↘ ↓

(123) (132)
↓ ↓

(1324) (1423)
↘ ↙

(12)
↓

(1)

Forcing relation on 10 cycles of length 4 or less

Definition 1.3 (linear map) For a cycle θ ∈ Cn, the θ-linear map Lθ : [1, n] → [1, n] is
defined by

Lθ(i) = θ(i) for i ∈ {1, 2, . . . , n},
Lθ is linear on [j, j + 1] for j ∈ {1, 2, . . . , n− 1}.

Here we note that the graph of Lθ consists of at most n− 1 linear segments, each having a
slope m ∈ Z satisfying |m| ≥ 1.

It is well known that a cycle η is forced by θ if and only if Lθ has a periodic orbit of
type η [1].

Definition 1.4 (modality) Given θ ∈ Cn , n ≥ 3 define z(θ) by:

z(θ) :=

{
|z| if θ(2) > θ(1),
−|z| if θ(2) < θ(1),

where |z| is given by the number of i’s such that

(θ(i+ 1)− θ(i))(θ(i)− θ(i− 1)) < 0, 2 ≤ i ≤ n− 1.

If z(θ) = k ∈ Z then θ is called k-modal cycle. In particular if z(θ) = 1 then θ is also
called unimodal cycle, and if z(θ) = +2 or z(θ) = −2 then θ is also called bimodal cycle.
Let us denote the set of all k-modal cycles of length n by Cn(k). Let us also denote the set
of all k-modal cycles by C(k).
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The following facts are well known: < C,→> is not a linear ordering; < C(1),→>
and < C(−1),→> are linear orderings; θ = (123 · · ·n) is the largest element of Cn(1); and
θ∗ = (1n · · · 32) is the largest element of Cn(−1) (See [2]).

The family of some quadratic maps like the logistic maps [9],[12], or the tent maps or
the truncated tent maps [1],[4] realize cycles of length n for any n ∈ N. But those realized
cycles are all unimodal cycles.

In the next section, we study two different models which realize bimodal cycles θ1 =
(1243) and θ2 = (1342) respectively. In section 3, we study the essential difference of these
two bimodal cycles.

2 Models which Realize Bimodal Cycles

2.1 A model for Batesian mimicry

Let us consider the family of the maps Ga : [−1, 1]→ [−1, 1] defined by

Ga(x) := ax3 + (1− a)x, (1)

where a ∈ [0, 4]. This map was presented as a simple mathematical model for Batesian
mimicry [3].

2.1.1 3-Cycles

To find the value of a at which a 3-cycle created in a tangent bifurcation, we have to solve
the following system of equations:

aX3 + (1− a)X = Y,
aY 3 + (1− a)Y = Z,
aZ3 + (1− a)Z = X,

(3aX2 + 1− a)(3aY 2 + 1− a)(3aZ2 + 1− a) = 1,

where −1 ≤ X,Y, Z ≤ 1, and 0 < a < 4.
Alternatively, considering the discriminant of G3

a(x) − x = 0, we get the value of a as
positive roots of the polynomial:

4a8 − 48a7 + 189a6 − 144a5 − 828a4 + 2052a3 − 972a2 − 2700a+ 4644 = 0

which are approximately a = 3.69964 and a = 3.92487 [3].

2.1.2 θ1 = (1243)

From the symmetry of both the graph of y = Ga(x) and y = Lθ1(x), θ1 := (1243), we can
easily find the value of a at which a 4-cycle created in a tangent bifurcation and whose orbit
O realizes θ1 = (1243). Indeed at the value a = 1 + 2

√
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realizes θ1 = (1243).

2.2 A model for business cycles

Next let us consider the family of the maps Ha : [−1, 1]→ [−1, 1] defined by

Ha(x) := ax− (a+ 1)x3, (2)

where a ∈ [0, 3]. This map was presented as a mathematical model for business cycles [6],[7].

2.2.1 3-cycles

To find the value of a at which a 3-cycle created in a tangent bifurcation, we have to
solve the following system of equations:

aX − (a+ 1)X3 = Y,
aY − (a+ 1)Y 3 = Z,
aZ − (a+ 1)Z3 = X,

(a− 2(a+ 1)X2)(a− 2(a+ 1)Y 2)(a− 2(a+ 1)Z2) = 1,

where −1 ≤ X,Y, Z ≤ 1, and 0 < a < 3.
Alternatively, considering the discriminant of H3

a(x) − x = 0, we get the value of a as
positive roots of the polynomial:

4a8 + 16a7 − 35a6 − 206a5 − 113a4 + 376a3 + 715a2 + 1690a+ 2197 = 0

which are approximately a = 2.45044 and a = 2.98177.

2.2.2 θ2 = (1342)

From the symmetry of both the graph of y = Ha(x) and y = Lθ2(x), θ2 := (1342), we
can easily find the value of a at which a 4-cycle created in a tangent bifurcation and whose
orbit O realizes θ2 = (1342). Indeed at the value a = 2

√
2 ≈ 2.828427, the orbit of 4-cycle{
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realizes θ2 = (1342).

3 Difference Between the Two Bimodal Cycles

These cycles θ1 = (1243) and θ2 = (1342) are both bimodal and self-conjugate:

Definition 3.1 (conjugate of cycle) For a cycle θ ∈ Cn, the conjugate (inverse pattern)
of θ, which is denoted by θ∗, is defined by

θ∗(i) := n+ 1− θ(n+ 1− i) for i = 1, 2, . . . , n.

In particular, if θ∗(i) = θ(i) for any i = 1, 2, . . . , n, then we call it self-conjugate. Obviously,
θ∗∗ = θ for any cycle θ ∈ Cn.
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Proposition 3.1 For any cycle θ ∈ Cn, the graph of y = Lθ(x) is point symmetric to that
of y = Lθ∗(x) with respect to the point (x, y) = (n+1

2 , n+1
2 ).

Proof.
From the definition of θ∗, it follows that

(i, θ∗(i)) + (n+ 1− i, θ(n+ 1− i))
2

=
(n+ 1, n+ 1)

2

for any i = 1, 2, . . . , n. 2

3.1 Cycles with linear map having exactly one fixed point

To show the difference between θ1 = (1243) and θ2 = (1342), first we present the result
which is given by I. Mulvey in [10].

Definition 3.2 (RL-pattern) Let η ∈ Cn be any cycle of length n. The RL-pattern for η
is the sequence

G(η) = G1G2 · · ·Gn ∈ {R,L}n

defined by

Gi :=

{
R if ηi(1) > ηi−1(1),
L if ηi(1) < ηi−1(1).

Let us denote the length of the longest string of consecutive R’s in the RL-pattern for η by
R(η), and L’s by L(η) respectively. Obviously, every RL-pattern begins with an R and ends
with an L.

Let θ ∈ Cn be a cycle of length n such that Lθ has exactly one fixed point. Let us denote
this unique fixed point by p1 ∈ (1, n), and let

E1 := {x < p1|Lθ(x) = p1}.

If E1 6= φ, let us define p2 by p2 := max{E1}. Inductively, for i > 1 define Ei as follows:

Ei := {x < pi|Lθ(x) = pi}.

If Ei 6= φ, let us also define pi+1 by pi+1 := max{Ei}. We see that for some i ≥ 1, Ei = φ
since Lθ has exactly one fixed point.

Similarly let
F1 := {x > p1|Lθ(x) = p1}.

If F1 6= φ, let us define q2 by q2 := min{F1}. Inductively, for j > 1 define Fj as follows:

Fj := {x > qj |Lθ(x) = qj}.

If Fj 6= φ, let us also define qj+1 by qj+1 := min{Fj}. We see that for some j ≥ 1, Fj = φ
since Lθ has exactly one fixed point.

We are now ready to have the following definitions:

Definition 3.3 (step number and backward step number) Let θ ∈ Cn be a cycle of
length n such that Lθ has exactly one fixed point. The step number of θ, denoted by S(θ),
is the smallest value of i for which Ei = φ. The backward step number of θ, denoted by
S∗(θ), is the smallest value of j for which Fj = φ.
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Lemma 3.1 Let θ ∈ Cn be a cycle of length n such that Lθ has exactly one fixed point.
Then it follows that

S(θ) = S∗(θ∗).

Putting θ∗ for θ, we also have S(θ∗) = S∗(θ∗∗) = S∗(θ).

Proof.
Let us denote the unique fixed point of Lθ by p1 ∈ (1, n). The graph of y = Lθ(x)

is point symmetric to that of y = Lθ∗(x) with respect to the point (x, y) = (n+1
2 , n+1

2 ).
Thus Lθ∗ also has exactly one fixed point q1 ∈ (1, n) which is point symmetric to p1 with
respect to the point (x, y) = (n+1

2 , n+1
2 ). Inductively pi (i ≥ 2), the maximum of Ei−1 :=

{x < pi−1|Lθ(x) = pi−1}, is point symmetric to qi (i ≥ 2), the minimum of Fi−1 := {x >
qi−1|Lθ∗(x) = qi−1}, with respect to the point (x, y) = (n+1

2 , n+1
2 ). Therefore, the step

number S of θ is same as the back step number S∗ of θ∗. 2

Proposition 3.2 Let θ ∈ Cn, n ≥ 2 be a cycle such that Lθ has exactly one fixed point.
Let η ∈ Cm, m ∈ N be any cycle. Then the following statements hold:

(a) If R(η) > S(θ) then θ does not force η.
(b) If R(η) > S∗(θ∗) then θ∗ does not force η.
(c) If L(η) > S∗(θ) then θ does not force η.
(d) If L(η) > S∗(θ∗) then θ∗ does not force η.

Proof.
The first statement (a) was proven by I. Mulvey in [10]. Using Lemma 3.1, we can prove

the remaining statements (b)-(d) in similar fashion. 2

Remark 3.1 For θ1 = (1243), we have S(θ1) = 2 and S∗(θ1) = 2. Therefore θ1 does not
force any cycle η with R(η) > 2 nor L(η) > 2. In particular, θ1 does not force η = (123 · · ·n),
the largest element of Cn(1), nor η∗ = (1n · · · 32), the largest element of Cn(−1), for any
n ≥ 4. On the other hand, the orbit Oη = {15/13, 30/13, 40/13} realizes η = (123), and the
orbit Oη∗ = {25/13, 35/13, 50/13} realizes η∗ = (132).

Therefore at the value a = 1 + 2
√

2 ≈ 3.828427, though the system (1) is chaotic in the
sense of Li-Yorke, it seems that there still exists a large class of ±1-modal cycles which are
not realized.

Remark 3.1 leads us to the following generalization:

Theorem 3.1 Any cycle θ ∈ Cn, n ≥ 2 with linear map Lθ has exactly one fixed point can
not be an upper bound for C(+1) nor C(−1).

Proof.
If Lθ has exactly one fixed point then S(θ) and S∗(θ) can be defined. Let S(θ) = k

and S∗(θ) = l for some k, l ∈ N. Then from Proposition 3.2, θ does not force any cycle η
with R(η) > k nor L(η) > l. In particular, θ does not force η = (123 · · · k + 2), the largest
element of Ck+2(1), nor η′∗ = (1l + 2 · · · 32), the largest element of Cl+2(−1). 2

Example 3.1 Indeed there are some cycles which can not be upper bound for C(+1) nor
C(−1), though their modalities are big enough. For example, the linear map Lθ for −8-
modal cycle θ = (1, 8, 2, 7, 5, 10, 3, 9, 4, 6) ∈ C10(−8) has exactly one fixed point and S(θ) =
S∗(θ) = 1. Thus it can not be an upper bound for C(+1) nor C(−1) at all.
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With Lemma 3.2 below, we have the following statement as a corollary of Theorem 3.1:

Corollary 3.1 Any +2-modal cycle θ ∈ C(+2) can not be an upper bound for C(+1) nor
C(−1).

Lemma 3.2 If θ ∈ Cn(+2), then Lθ has exactly one fixed point.

Proof. Let us define the upper triangular space T+ and the lower triangular space T− as
follows:

T+ := {(x, y) ∈ N× N | 1 ≤ x, y ≤ n, x < y},
T− := {(x, y) ∈ N× N | 1 ≤ x, y ≤ n, x > y}.

Then for any θ ∈ Cn, the graph of y = Lθ(x) begins with the point (x, y) = (1, θ(1)) ∈ T+
and ends with the point (x, y) = (n, θ(n)) ∈ T−. Thus from the continuity of the graph, there
always exists at least one intersection point of y = Lθ(x) and y = x, which is corresponding
to the fixed point of Lθ(x). Moreover for any θ ∈ Cn there always exist an odd number of
intersection points of y = Lθ(x) and y = x. Suppose there exist more than three distinct
intersection points of y = Lθ(x) and y = x for +2-modal cycle θ ∈ Cn. Then for some h, i, j,
where 1 ≤ h < h+ 1 ≤ i < i+ 1 ≤ j < j + 1 ≤ n it follows that

(h, θ(h)) ∈ T+, (h+ 1, θ(h+ 1)) ∈ T−, θ(h+ 1)− θ(h) ≤ −1,
(i, θ(i)) ∈ T−, (i+ 1, θ(i+ 1)) ∈ T+, θ(i+ 1)− θ(i) > 1,
(j, θ(j)) ∈ T+, (j + 1, θ(j + 1)) ∈ T−, θ(j + 1)− θ(j) ≤ −1.

This contradict “θ is +2-modal cycle”. 2

3.2 Class of bimodal cycles forced by θ1 = (1243)

In this subsection let us show that θ1 forces a class of +2-modal cycles whose linear maps
have exactly one fixed point.

The following is a key lemma to show the presence of periodic orbits [5].

Lemma 3.3 Let f be a continuous function from a closed interval I into itself. Let Ji,
0 ≤ i ≤ n − 1, be closed subintervals of I. If f(Ji) ⊃ Ji+1 for all 0 ≤ i ≤ n − 2 and
f(Jn−1) ⊃ J0, then there exists a periodic point y ∈ J0 of f such that f i(y) ∈ Ji for all
1 ≤ i ≤ n− 1 and fn(y) = y.

We are now ready to show the following claim:

Theorem 3.2 θ1 = (1243) forces a class of +2-modal cycles whose linear maps have exactly
one fixed point.

Proof.
For θ1 = (1243), let us consider the following labeled digraph Gθ1 :=< G,−→, sgn >

[2],[11]:
(a) G := {I1, J21, I22, I3}, where I1 := [1, 2], J21 := [2, 2.5], J22 := [2.5, 3], I3 := [3, 4];
(b) I1 −→ J21, I1 −→ J22, I1 −→ I3, J21 −→ J22, J21 −→ I3, J22 −→ I1, J22 −→ J21,

I3 −→ I1, I3 −→ J22;
(c) sgn(I1) = +1, sgn(J21) = −1, sgn(J22) = −1, sgn(I3) = +1.

Next, for any m,n ∈ N, let us consider a closed walk of length m+ n+ 2:

ām,n = (I1,

m︷ ︸︸ ︷
. . . , J21, I3,

n︷ ︸︸ ︷
. . . , J22) ∈ Gm+n+2,
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where

m︷ ︸︸ ︷
(. . . , J21) is given by (Ĵ21, J22, . . . , Ĵ21, J22, J21) or (Ĵ22, J21, . . . , Ĵ22, J21), and

n︷ ︸︸ ︷
(. . . , J22)

is given by (Ĵ22, J21, . . . , Ĵ22, J21, J22) or (Ĵ21, J22, . . . , Ĵ21, J22).

Then, from Lemma 3.3, there exists a periodic point y ∈ I1 of Lθ1 such that Liθ1(y) ∈
J21 ∪ J22 for all 1 ≤ i ≤ m, Lm+1

θ1
(y) ∈ I3, Liθ1(y) ∈ J21 ∪ J22 for all m+ 2 ≤ i ≤ m+ n+ 1,

and Lm+n+2
θ1

(y) = y. Thus Om,n = {y, Lθ1(y), . . . , Lm+n+1
θ1

(y)} is a periodic orbit with least
period m+ n+ 2 since ām,n is nonrepetitive.

Next let us consider the cycle ηm,n ∈ Cm+n+2 which is realized by this periodic orbit
Om,n. Let us rewrite Om,n as follows:

Om,n = {x1, x2, x3, . . . , xl, xl+1, . . . , xm+n, xm+n+1, xm+n+2}

where x1 < x2 < · · · < xl < xl+1 < · · · < xm+n+1 < xm+n+2. Then x1 = y ∈ I1,
x2 = Lmθ1(y), x3, . . . , xl ∈ J21, xl+1, . . . , xm+n, xm+n+1 = Lm+n+1

θ1
(y) ∈ J22, and xm+n+2 =

Lm+1
θ1

(y) ∈ I3 for some l. Then it follows that

Lθ1(x2) = Lm+1
θ1

(y) = xm+n+2,

Lθ1(xm+n+1) = Lm+n+2
θ1

(y) = y = x1.

Namely the cycle ηm,n has the form of

ηm,n =

(
1 2 3 · · · m+ n m+ n+ 1 m+ n+ 2
· · · m+ n+ 2 · · · · · · · · · 1 · · ·

)
.

Moreover from x2 < · · · < xl < xl+1 < · · · < xm+n+1 and sgn(J21) = sgn(J22) = −1, it
follows that Lθ1(x2) > · · · > Lθ1(xl) > Lθ1(xl+1) > · · · > Lθ1(xm+n+1). Namely the cycle
ηm,n(i) is monotone decreasing for 2 ≤ i ≤ m + n + 1. Therefore, for any m,n ∈ N, the
cycle ηm,n is a +2-modal cycle and from Lemma 3.2 Lηm,n

has exactly one fixed point. 2

3.3 Cycles with linear map having plural fixed points

Opposite to θ1 = (1243), θ2 = (1342) forces both η = (123 · · ·n) and η∗ = (1n · · · 32), for
any n ∈ N. Namely θ2 = (1342) is an upper bound for the set of all ±1-modal cycles C(±1).

More generally, it was proven in [5] that θ2 = (1342) forces a class of −2-modal cycles
whose linear maps have three distinct fixed points. Indeed

ϕm,n = (1 m+ 1 m+ 2 · · · m+ n m m− 1 m− 2 · · · 2)

=

(
1 2 3 · · · m m+ 1 m+ 2 · · · m+ n− 1 m+ n

m+ 1 1 2 · · · m− 1 m+ 2 m+ 3 · · · m+ n m

)
and ϕ∗m,n = ϕn,m where m,n ≥ 2, which are forced by θ2 = (1342), force both η =
(123 · · ·n), and η∗ = (1n · · · 32), for any n ∈ N.

Remark 3.2 θ2 = (1342) forces both η = (123 · · ·n) and η∗ = (1n · · · 32), for any n ∈ N.

Therefore at the value a = 2
√

2 ≈ 2.828427 the system (2) is chaotic in the sense of
Li-Yorke, and all ±1-modal cycles are already realized.
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4 Final Remark

Remark 4.1 X1 = −1, X2 = 0, and X3 = 1 are fixed points of (1) for all a ∈ [0, 4].
X1 = −1 and X3 = 1 are on the both edges of the interval [−1, 1] and unstable for all
a ∈ [0, 4]. Any periodic orbit does not bifurcate from these two fixed points. The unique fixed
point of Lθ where θ is any cycle realized by (1) with a suitable value a ∈ [0, 4] is corresponding
to X2 = 0. (1) realizes some +2-modal cycles, because (1) is a cubic polynomial of x and
the coefficient of x3 is positive.

On the other hand, Y2 = 0 is a fixed point of (2) for all a ∈ [0, 3]. It is stable for
0 ≤ a < 1 and unstable for 1 < a < 3. Y1 = −

√
(a− 1)/(a+ 1) and Y3 =

√
(a− 1)/(a+ 1)

are fixed points of (2) bifurcated from Y2 = 0 at the value a = 1. Three distinct fixed points
of Lθ where θ is a cycle realized by (2) with a suitable value a ∈ (1, 3] is corresponding to
Y1, Y2, and Y3. (2) realizes some −2-modal cycles, because (2) is a cubic polynomial of x
and the coefficient of x3 is negative.

So the modality of the cycle and the number of fixed points of the linear map of the cycle
are determined by the original system which realizes the cycle.

Conversely from the observation in Sections 2 and 3, we can conclude that not only
modality of the cycle but also the number of fixed points of the linear map of the cycle affect
how much chaotic the system is.

Acknowledgement. The author thanks Professor Ming-Chia Li for the gift of his paper
[5]; Ms. Mary Ann L. Chan for the chart of Baldwin’s ordering for 154 cycles of length 6 or
less, created by herself; Mr. Winfer C. Tabares for introducing the author to the paper [3];
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