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Abstract

For the denoising of blocky images, based on the nonsmooth TV-model, a new
method combining the algorithm introduced by Chambolle [1] and a primal-dual active
set strategy due to Hintermüller and Stadler [7] is introduced. The active set technique
aims at decomposing the image into edges (active sets) and flat zones (inactive sets,
which we call islands). The data reconstruction on the islands is based on an averaging
technique reflecting the statistics of the noise. Utilizing the primal and a corresponding
dual variable in the island detection stabilizes the algorithm. The dual update is based
on the strategies in [1] and [7]. Numerical tests showing that the method is highly
efficient in removing the noise, in restoring edges, and in the reconstruction of flat
image features.

1 Introduction

Given an observed noisy image d in a domain Ω, we want to get the best reconstruction
s ∈ L2(Ω) of the original clean image. To date there are many ways of doing so, the
more successful of which use variational or partial differential equation based approaches.
Variational models are efficient in removing high oscillations which are often associated
to noise. The most popular variational example is the Rudin-Osher-Fatemi (ROF) total
variation based image denoising model [9]. Specifically, the authors in [9] proposed solving
the minimization problem

min

∫

Ω

|∇s| dx (1)

subject to s+ v = d, (2)
∫

Ω

|v|2 dx ≤ σ2, (3)
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where | · | denotes the Euclidean norm, v is Gaussian noise, and σ2 is the noise variance.
When the variance is undetermined, ROF proposed minimizing the unconstrained problem

∫

Ω

|s− d|2 dx+ α

∫

Ω

|∇s| dx

which yields the same solution as rofoforasuitablyselectedLagrangemultiplierα [2]. The
ROF model is effective in preserving edges as it allows discontinuities in the reconstruction.
Currently there are various approaches to solve the ROF, some of them we cite here. In
[9] the authors used a delayed time marching scheme. A primal-dual method was proposed
in [3], while a fixed-point algorithm to solve the dual of the ROF was introduced in [1].
Active set methods that exploit the primal-dual structure of ROF were used in [6] and [7].
A second-order cone programming method was presented in [4]. In this research, we develop
an algorithm that utilizes an active set method and that exploits the statistics of the noise.

In this paper, we introduce a primal-dual active set method that exploits the statistics
of the noise in image subdomains where the norm of the gradient is some small value. For
images with piecewise constant regions, the method is shown to be effective and fast in both
restoring flatness features and sharp edges. However, the updates on the primal variable is
not strictly a Newton update, and thus convergence with respect to Karush-Kuhn-Tucker
residuals is not obtained.

In the ensuing discussions, Ω is a simply connected domain in R2 with Lipschitz contin-
uous boundary ∂Ω. In the discrete setting, Ω is the n×n pixel-square. We denote by ∇ the
(distributional) gradient operator. The divergence operator div is the adjoint of ∇, and 4
denotes the Laplace operator.

For a vector v :=

[

vx

vy

]

∈ R2N , with N = n2, the Euclidean norm |v| ∈ RN is given

by |v|i =
(

v2
xi

+ v2
yi

)
1
2 for i = 1, . . . , N. Given v, w ∈ Rm, we also define the following

operations: q = v/w implies qi = vi/wi, and q = v ? w implies qi = viwi for i = 1, . . . ,m.

On a closed subset P in Ω, we denote the subvector uP of u those whose indices are in
P . Given a vector w ∈ Rm, we denote by D(w) the m ×m diagonal matrix with diagonal
entries wi, i = 1, . . . ,m. The vector of ones in Rm is represented by 1m, and Im is the
m×m identity matrix.

The motivation for this work is the assumption that in Ω, the value of pixels in a closed
and flat subdomain, say I, is constant. This makes |(∇u)i| = 0 for almost every i ∈ I,
whereas on the boundary of I, |(∇u)i| can be large. Assuming that the image is corrupted
with additive white noise, we can apply an averaging scheme to denoise flat portions of the
image, and then use standard denoising methods on the boundary set. This approach can
greatly lessen the amount of variable pixels to solve while recovering sharpness in edges and
flat features.

2 The Problem

A popular and well researched model for image denoising is the Rudin-Osher-Fatemi (ROF)
total variation model:

min
s∈BV (Ω)

1
2Ω|s− d|2 dx+ αΩ|∇s| dx, (ROF)
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where the space of bounded variations BV is defined by

BV (Ω) := {f ∈ L1 :

∫

Ω

|∇f | <∞}.

The first term in ROF is the data fidelity term which is responsible for recovering the
features of the image. The second term is the total variation (TV) term which aids in
preserving edges and removing high oscillations - usually typical with noise- in the image
[8, 10]. The ROF is highly effective in image denoising; however, it exhibits the staircase
effect, i.e., smooth curves are approximated by piecewise constant functionals. Since the
TV term is also nondifferentiable at zero, many approaches applied a regularization of the
TV term by a small positive parameter ε, i.e., by replacing |∇s| with

√

|∇s|2 + ε (e.g. see
[9, 8, 10]).

An alternative approach to solving the ROF is to solve its dual form. The dual of
the ROF is a differentiable quadratic problem involving simple constraints. Applying the
Fenchel duality theorem (cf. [7]) on ROF, we obtain the dual problem

sup
p ∈ L2(Ω2),

|p| ≤ α a.e. in Ω

{

− 1
2div p+ d+ 1

2d
}

. (DROF)

The solutions s∗ and p∗ of ROF and DROF respectively are characterized by the opti-
mality conditions [7]

div p∗ = s∗ − d, (4)

|∇s∗| ? p∗ − α∇s∗ = 0 if |p∗| = α
∇s∗ = 0 if |p∗| < α

}

in L2. (5)

Despite the smoothness of the DROF, its solution is not unique because the kernel of
the divergence operator is nonempty. In [1] Chambolle proposed a fixed point method to
solve the DROF. The method obtains a dual solution that determines the unique solution
to the ROF.

3 On Chambolle’s algorithm

Let Ωh be the discrete domain Ω, and Y = Ωh ×Ωh. The discrete gradient operator is given

by the matrix ∇h =

[

Dx

Dy

]

, where Dx and Dy are respectively the horizontal and vertical

forward difference operators. For the discrete divergence operator we use divh = −∇>
h ,

and 4h denotes the discrete Laplacian obtained using the standard five-point stencil with
Dirichlet boundary conditions. We now review the results in [1].

A solution of ROF can be simply given by s∗ = d+ παK̄(d), where παK̄ is the nonlinear
projection and K̄ is the closure of the set

K =
{

div ψ : ψ ∈ C1
0 (Ω;R2), |ψ(x)| ≤ 1 ∀x ∈ Ω

}

.

Chambolle developed a fixed point method that computes this projection in dimension 2 by
way of solving the problem

min
p ∈ Y,

|p|2 ≤ 1 a.e. in X

αdivh p+ d (6)

.
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Karush-Kuhn-Tucker conditions yield the existence of a Lagrange multiplier λ for the con-
straint in dualC. The corresponding Euler-Lagrange equation is

−(∇(αdivh p+ d)) + λ ? p = 0, (7)

where λ ∈ R2N and nonnegative.
Complementary conditions on λ and p state that whenever |pi| = 1, then λi > 0, and

when |pi| < 1, λi = 0. For both cases,

λi = |(∇(αdivh p+ d))i|.

In the algorithm proposed in [1] (we label as algorithm C ) the p-update is pk+1 =

[

pk+1
x

pk+1
y

]

where

pk+1
l =

pk
l + τDl(divh p

k + d/α)

1 + τ |∇h(div pk + d/α)|
, l = x, y. (8)

We get the resulting theorem on the convergence property of the algorithm.
Theorem (Theorem 3.1, [1])

Let τ ≤ 1/8. Then αdivh p
k converges to παK̄(d) as k → ∞.

Setting sk = d+ αdivh p
k and β = α/τ, the p-update can be expressed as

pk+1
l =

βpk
l +Dls

k

β + |(∇hsk)|
, l = x, y. (9)

With this representation by s, the Lagrange multiplier λ can be expressed as λ = |∇hs|.
Numerical implementations of algorithm C show it to be efficient in denoising images

and restoring edges. It runs fast but it also requires many iterations to converge.

In [7] Hintermüller and Stadler presented a primal-dual active set method that solves
a regularized version of DROF. The method was shown to converge superlinearly to the
unique solution of the predual of the version.

4 On Hintermüller and Stadler’s algorithm

A regularization of the dual problem DROF by a positive parameter γ was proposed in [7]:

sup
p ∈ L2(Ω2),

|p| ≤ α a.e. in Ω

{

− 1
2div p+ d+ 1

2d
}

−
γs−1

sαs−1
ps

Ls , (10)

where 1 < s ≤ 2. The objective functional in rdual is Ls-uniformly concave, and thus a
unique solution p∗ exists for every fixed γ. We show the results in [7] for the case s = 2.

By the Fenchel duality theorem, the dual of rdual is given by

min
s∈H1

0 (Ω)

1

2
Ω|s− d|2 dx+ αΩΦγ(∇s) dx, (11)

where for v ∈ L2, Φγ(v)(x) :=

{

|v(x)| − 1
2γ if |v(x)| ≥ γ,

1
2γ
|v(x)|2 if |v(x)| < γ.



A Primal-Dual Island Search Method for TV-based Image Restoration 107

The solutions p∗γ and s∗γ of problems rdual and rprimal, respectively, satisfy

s∗γ − div p∗γ = d in H−1(Ω), (12)

|∇s∗γ | ? p
∗
γ − α∇s∗γ = 0 if |p∗γ | = α,

γp∗γ − α∇s∗γ = 0 if |p∗γ | < α

}

in L2(Ω). (13)

Remark. These conditions mirror almost exactly the conditions in rofgr1 and rofgr2, differing
only in the added term γp∗γ in kkt2. The equations in kkt2 can be joined into one equation

max(γ, |∇s∗γ |) ? p
∗
γ − α∇s∗γ = 0. (14)

The results in generalized differentiability and semismoothness of the max operator and
the (Euclidean) `2-norm (cf. [5]) allow the use of a Newton step to the discretized forms of
kkt1 and maxkkt at the approximations sk and pk:

(

IN −divh

G∇ D(m̃k)

) (

δs
δp

)

=

(

−sk + divhp
k + d

α∇hs
k −D(m̃k)pk

)

, (15)

where
G =

(

−αI + χAk+1
D(pk)J(∇hs

k)
)

,
m̃k = max

(

γ12N , η(∇hs
k)

)

∈ R2N ,

and the mapping η : R2N → R2N is defined by

(η(v))i = |v|i for v ∈ R2N , i = 1, . . . , 2N.

In G, we have χAk+1
= D(tk) ∈ R2N×2N with

tki :=

{

1 if η(∇hs
k)i ≥ γ,

0 else.

The variable tk determines where an index i belongs: to the active set if tki = 1; otherwise, to
the inactive set. The matrix J denotes the Jacobian of η, i.e., for ∇hs = (Dxs,Dys)

> ∈ R2N ,

J(∇hs) = (D(η(∇hs)))
−1

(

D(Dxs) D(Dys)
D(Dxs) D(Dys)

)

Since m̃k
i > 0, for i = 1, . . . , 2N , the matrix D(m̃k) is invertible. Solving for δp, we get

δp = αD(m̃k)−1∇hs
k
γ − pk −D(m̃k)−1G∇hδs. (16)

Substituting δp to the first equation in Newtonstep, we get

Hkδs = fk, (17)

where the matrix Hk and the right hand side fk are defined as

Hk := IN + ∇>
hD(m̃k)−1

(

αI2N − χAk+1
D(pk)J(∇hs

k)
)

∇h,

fk := −sk + d− α∇>
hD(m̃k)−1∇hs

k.

The updates follow:
sk+1 = sk + δs and pk+1 = pk + δp. (18)
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It was shown in [7] that although the matrix Hk is in general not symmetric, in the solution
(s∗γ , p

∗
γ) it is symmetric. In case Hk is not positive definite, pk is projected into the feasible

region, e.g. by replacing pk
i by αmax

{

α, 1/|pk
i |

}

pk
i for each i wherein |pi| > α. The pro-

jection results in a modified system matrix H+
k which is positive definite. Assuming that

sk → s∗ and pk → p∗, the modified system matrices H+
k converges to Hk as k → ∞ (see

Lemma 3.5, [7]).
In [5] it was shown that primal-dual active set methods are equivalent to the semismooth

Newton method. In [7] the authors introduced a primal-dual active set algorithm (we
label as Algorithm HS ) that applies the above updates on (s, p). The following result was
established.

Theorem (Theorem 3.6, [7])
Assuming the feasibility of pk for every k ∈ N, the iterates (sk, pk) in Algorithm HS con-

verge superlinearly to (s∗, p∗), provided that (s0, p0) is sufficiently close to (s∗, p∗). Moreover,

this convergence is global.

In terms of number of iterations, algorithm HS converges faster than algorithm C. How-
ever, HS requires solving the full system du, which can be memory-expensive. The imple-
mentation in [7] made use of preconditioned conjugate gradient method with incomplete
Cholesky factorization to speed up the solution process.

For a simple image such as a binary image with blocky structures, it may be faster to
recover the original image if we know exactly the edge set and the closed domains bounded
by the edges. We could simply assign a single value to all pixels in a closed region. The
problem is simplified to determining the closed regions and the edges. Consequently, the
problem would require fewer variables to solve compared to solving the full system.

We introduce a primal-dual active set approach on the ROF that detects the edge set,
utilizes the statistics of the noise in the closed domains, and reconstructs boundaries and
piecewise-constant features of the image. The proposed algorithm is observed to be most
effective in reconstructing images with blocky features. We call the proposed algorithm as
the primal-dual island method.

5 The primal-dual island (PDI) method

Usually, an image is made up of flat portions and closed edges. In a flat portion, the value
of the pixels is constant, thus the gradient is zero. We will call the edges the boundaries
and the flat portions islands.

Definition Let I be a subset of Ω such that |(∇s)i| = 0 for all i ∈ I. Then I is called an
island in Ω.

Since in an island the gradient is zero, we will call the set of islands in Ω the inactive set
I. The set of boundaries enclosing the islands will be the active set A. These assignments
for I and A agree with the corresponding definitions in [7]. Note that for every Ir ⊂ I,
r = 1, . . . , T, such that Ir ∩ Ij = ∅ for r 6= j, we have I = I1 ∪ · · · ∪ IT .

Given an original image do we add to it Gaussian noise ξo to obtain the observed image
d := do + ξo. We assume that over an island with a sufficient number of pixels, the mean of
the noise is some small positive number ε. Thus a good approximation of the pixels in the
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island is the mean of that island. Clearly, averaging removes high oscillations in an island
and recovers flatness.

In the proposed PDI method, we decompose the components of the solution s into A
and I. The main feature is the s-update in I. Over Ir ⊂ I the update for s is the mean
value d̄Ir

, i.e.,

∀i ∈ Ir, s
k
i = d̄Ir

:=
1

|Ir |c

∑

i∈Ir

di =
1

|Ir|c

∑

i∈Ir

do
i + εi, (19)

where we define | · |c to be the set cardinality. The PDI comes cheap to implement since the
total number of variables to solve equals T + |A|c.

We hybridize algorithms C and HS to adopt the PDI method. On the active set we use the
standard updates of these algorithms. The averaging scheme on I can give a better TV-term
value, but possibly not a better value in the data fidelity term. Since the update method
is not entirely a gradient method or a Newton method, convergence properties associated
with the latter methods cannot be expected from PDI at its current state. Convergence of
PDI in the sense of a minimum KKT residual may not be achieved. Here we use as KKT
residual KKTres = (‖F1‖2 +‖F2‖2)

1
2 , where F1 and F2 are the left hand sides, respectively,

of kkt1 and maxkkt.

5.1 Algorithms PDI-C and PDI-HS

We use the observation in [6] that the multiplier |∇hs| is efficient in detecting edges. Let
γ > 0. In equation EulerC the Lagrange multiplier is λk

i = |(∇hs
k)i|, i = 1, . . . , 2N, where

we set sk = d + αdivh pk. Note that λi = λi+N and |pi| = |pi+N |. For γ > 0 we apply the
active set determination in [5]:

Ak+1 =
{

i ∈ {1, . . . , N} : λk
i + γ(|pk

i | − 1) > 0
}

and Ik+1 = Ω \Ak+1. (20)

We modify algorithm C so that it will utilize the PDI method. The resulting algorithm
is PDI-C:

Algorithm PDI-C

1. Initialize p0 = 0 and s0 = d. Set k = 0.
2. Determine the active and inactive sets Ak+1 and Ik+1 respectively, by AIC.

3. Update p according to newp1.
4. Update s: in Ik+1, use uI; and in Ak+1, sAk+1 = (d+ αdivh p

k)Ak+1 .

5. Stop, or set k = k + 1 and go to step 2.

The regularized dual problem rdual was solved in [7] by a primal-dual active set method.
In this method, the active and inactive sets were determined as

Ak+1 = {i ∈ {1, . . . , N} : |(∇hs)i| > γ} and Ik+1 = Ω \Ak+1. (21)

Implementing the PDI method on algorithm HS, we get the following algorithm:

Algorithm PDI-HS

1. Initialize p0 = 0 and s0 = d. Set k = 0.
2. Determine the active and inactive sets Ak+1 and Ik+1, respectively, using AIHS
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3. Update s: in Ik+1, use uI; and in Ak+1, sk+1
Ak+1 = sk

Ak+1 + δk
s

Ak+1
,.

4. Update p according to upHS.

5. Stop, or set k = k + 1 and go to step 2.

In step 3, δk
s

Ak+1
is obtained by solving in du the subsystem of equations

HAAδ
k
s

Ak+1
= fA −HAIδ

k
s

Ik+1
.

By HAA we mean the submatrix of H with row indices and column indices in A. The matrix
HAI is defined similarly. In the inactive set, the increment δk

s
Ik+1

= sk+1
Ik+1 − sk

Ik+1 .

6 Numerical computations

We present here numerical implementations of PDI-C and PDI-HS on a 255 × 255 image
(figure 2(a)) with noise standard deviation nl = 0.2 and nl = 0.4 (figures 2(b), 2(c)) and
with corresponding TV-regularization parameters α = 0.4 and α = 0.7 respectively. The
algorithms terminate when the desired KKT residual accuracy is reached or upon some
other stopping criterion, e.g. a specified time limit.

Figure 1: Image data

(a) True Image (b) With noise η0 = 0.2 (c) With noise η0 = 0.4

Results on the noisy images show that the PDI method can recover almost accurately
edges and flat portions. For instance in Figure 2 both algorithms C and HS tend to lessen
contrast, particularly in the hole of the annulus, while the PDI restores better contrast. At
the higher noise level 40% the loss of contrast in the solutions of C and HS is more evident,
especially along the edges of the triangle and the annulus (figures 4(a), 4(b)).

The PDI method gives a small residual to the complementarity system maxkkt, showing
that the averaging update is very good for recovering flat portions. However, the method
yields larger residual for kkt1. Due to the higher KKT residual, the image reconstruction of
PDI - though visually could be better than the results of algorithms C and HS - may not
be the minimizer of ROF.

We observe that the PDI method works better with algorithm HS. In both noise levels,
the PDI-HS reconstructions approximate better the original image within fewer iterations.
Tables 1 and 2 show some statistics of the implementations. The entry image residual

denotes the distance of the reconstruction from the clean image, which in natural cases may
not be known.
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Figure 2: Reconstructions for image with 20% noise.

(a) C (b) HS (c) PDI-C (d) PDI-HS

Table 1: α = 0.4, noise nl = 0.2

γ iterations KKTres image residual function cost time
C 1.375 × 10−3 497 0.1632 5.9308 0.7795 85.3125

PDIC 1.375 × 10−3 41 19.2501 6.9209 0.8742 185.3438
HS 5.42 × 10−5 14 2.6×10−7 6.2528 1.5178 46.5781

PDIHS 3.75 × 10−2 11 52.6347 4.6782 0.7279 85.2031

Figure 3: Reconstructions for image with 40% noise

(a) C (b) HS (c) PDI-C (d) PDI-HS

Table 2: α = 0.7, nl = 0.4

γ iterations KKTres image residual. cost time
C 7.9 × 10−3 875 0.1685 9.2777 1.4045 131.3594

PDIC 7.9 × 10−5 376 0.7613 10.0393 1.5514 185.4063
HS 5.42 × 10−5 14 3.7 × 10−7 10.3948 2.6754 49.1719

PDIHS 3.83 × 10−2 30 103.2406 8.9188 1.2478 131.3125
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Conclusion

Although the PDI method does not converge in the smooth sense, its use of the active set
method and its averaging scheme makes it a robust method in restoring edges and blocky
features. Numerical results show that the PDI method outperforms standard methods
(algorithms C and HS ) in that it yields solutions which are good reconstructions of images
with piecewise-constant features.
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