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Abstract

The concept of cycle derivative of a graph was introduced by the first two authors
in [2] and [3]. The (first) cycle derivative of a graph G, denoted by G’, is obtained by
treating the induced cycles (originally called prime cycles) of the graph G as vertices
of G’ and where two vertices are adjacent if and only if they are induced cycles with
a common edge. Here, we consider the cycle derivatives of the complete graph K,
and the complete bipartite graph Ky, ,,. We show that K, is an 3(n — 3)-regular
hamiltonian graph for all n > 4. Furthermore, K’ is eulerian if and only if n > 3
is odd. For the complete bipartite graph, we prove that Kz,  is hamiltonian for
n > 3 and 2(n — 2)-regular eulerian for n > 2. In general, for m,n > 2, K.,  is a
2(2mn — 3n — 3m + 4)-regular eulerian graph.
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1 Preliminaries

We shall give only the definitions of important concepts, especially new concepts. The
definitions of some common concepts in graph theory will not be given anymore. The
readers may refer to some graph theory books for these definitions when necessary.

Definition 1.1. By a graph we mean a pair G = (V, E), where V is a finite set of elements
(hence, V' is possibly empty) called vertices and F is a set of 2 — subsets of V' called edges.

An edge joining two non-consecutive vertices of a cycle is called a chord. A cycle in a
graph is called a induced cycle (or a prime cycle) if it is chordless.

Definition 1.2. Let G be graph. The graph G’ whose vertices are the induced cycles of
G and where two vertices are adjacent if the corresponding induced cycles have a common
edge is called the (first) cycle derivative of G.
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Figure 1: Labeling the vertices of the fan F),.

Example 1.1. The fan F, is the sum P, + K1 of the path P, of order n and the trivial
graph K1 with one vertex. Shown in Figure 1 is the fan F,.

By definition, F,, = K; + P,. For n = 2, we have I, = K; + P, = Kj3. Hence,
F,/ = K3’ = K, = P, = P,_,. In general, by Theorem 1.1, F,, has exactly n — 1 prime
cycles. Furthermore, the proof of the said result states that these induced cycles are all Cs
or triangles. Let F, be the labeled graph shown in Figure 1. Evidently, each of the n — 1
induced cycles of F), is of the form ¢; = [i,i+ 1, z,4], where i = 1,2,...,n— 1. Observe that
Vi, CiCit1 € E(Fn/)

Consequently, F," = P,_;.

1.1 Some Preliminary Results

First, we present initial and some known results. The known results can be found in [4] and
[7]. In the first theorem, by nic(G) we mean the number of induced cycles of a graph G.

Theorem 1.1. [7]
(a) nic(F,) =n — 1, where n > 2;
(b) nic(Wy,) =n+ 1, where n > 3;
(c) nic(K,) = (), where n > 3; and

(d) nic(Kmn) = () (5), where m,n > 2.

Theorem 1.2. [4] The cycle derivative of the wheel W, is itself, i.e., W, = W,,, where
n > 3.

In view of Theorem 1.2, the wheel behaves like the function e”, since D, (e”) = e®. It is
a good exercise to find other graphs whose cycle derivatives are themselves. Tan [6] treated
this problem in her doctoral dissertation in 1987. Tan used the term cycle graph for cycle
derivative and the notation C(G) instead of G'.

By cycle derivative of a graph we refer to the first cycle derivative of the graph.

The following remark involving the cycle derivative of the ladder follows similarly as in
Example 1.1. Figure 2 shows the ladder P, x Fs.
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Figure 2: The ladder P> x Fs.

Remark 1. The cycle derivative of the ladder Py X P, is P,_1, i.e., (Po X P,) = P,_1.

Lemma 1.1. Let G be a connected graph. If a pendant edge is removed from G to obtain a
graph H, then G' = H'.

Proof. Removing a pendant edge from a connected graph G to obtain a connected graph H
does not affect the derivative of G, since G and H will have the same induced cycles.
Therefore, G' = H'. O

By repeatedly applying Lemma 1.1 to an arbitrary graph G, we obtain the following
corollary.

Corollary 1.2.1. Let G be a graph and let H be the largest subgraph of G such that H has
no pendant vertices. Then G' = H'.

1.2 Main Results

Here, we present our main results involving the cycle derivative of K, and the complete
bipartite graph Ks ,, .

For convenience, we shall denote or label by 1,2, 3, ..., n the vertices of the complete graph
K,,, where n > 4. The graph of Kg is shown in Figure 3 with a labelling of its vertices.The
induced cycles in K,, are the cycles of length 3. We shall denote by abc an induced cycle
containing the vertices a, b, c. We shall always arrange the vertices in our notation such that
a<b<ec

5) 4

Figure 3: The complete graph K.

First, let us have the following lemma and its corollary:

Lemma 1.2. Letn > 4. Then the induced cycles in K, of the form 1bc i.e. (1 <b<c<n)
form a cycle in K,,'.
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Proof. The induced cycles of the form 1bc are:

123 124 125 ... 12n
134 135 --- 13n
1(n—1)n

Observe that two distinct cycles in the same row share a common edge; two distinct
cycles in the same column share a common edge. Also, two consecutive cycles in the main
diagonal share a common edge. Here is how to form a cycle in K/, using only the induced
cycles in our list: We start in row 1 from the extreme left to the extreme right. Then go
vertically down to the last cycle. Then move up along the main diagonal. Then go up to
the highest unused cycle. Then go one step to the left. Then move vertically down to the
last cycle. And continue until all cycles are used. O

Tllustration: The construction above is illustrated in the case n = 8 below:

123 — 124 — 125 — 126 — 127 — 128

AN |
134 « 135 136 — 137 138

T 1 T l

145 146 147 148

N 1 !

156 157 158

T |

167 168

N

178

Corollary 1.2.1. Let v be a vertex of K,, where v € {1,2,...,n —2}. Then the induced
cycles of the form vij, where v < i < j <n in K, form a cycle in K,,'.

Proof. Let ' =n — v+ 1 and rename the vertices v,vo +1,...,v+n’ —1as1,2,3,...,7n/,
respectively. Thus, the renaming which is fairly straightforward, is as follows:

v — 1
v+1 — 2
v+ 2 — 3

v+n' -2 — n -1
v+n' -1 — n'

In the above renaming, note that v +n’ — 1 = n. Then the induced cycles of the form
vij, where v < ¢ < j < n become cycles of the form 1ij, where 1 < i < j5 < n/. Since
n' =mn—wv+1 >4, then by Lemma 1.2, they form a cycle in K,,’. By giving back the
original names of the vertices, the corollary follows. O

Theorem 1.3. K, is 3(n — 3)-reqular for all m > 4. Furthermore, it is hamiltonian for all
n > 4.

Proof. The induced cycles in K,," are all the cycles of length 3. If C is a cycle of length 3,
then for each vertex x not in C, we can form exactly 3 other cycles of length 3 sharing an
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edge in common with C'. Thus, the number of induced cycles in K, sharing an edge with
Cis 3(n — 3).

Now, let us prove that K,,’ is hamiltonian. For each v € {1,2,...,n— 2}, let C®) be the
cycle in K,," formed by the induced cycles of the form vij, where v < i < j < n. Note that
each induced cycle in K,, belongs to exactly one C(*). What we need to do now is form a
hamiltonian cycle by interconnecting the cycles C("). Consider the case when n = 4, then
C™ is the cycle [123,124,134]. On the other hand, C'® is [234]. Now, remove the edge
[124,134] from C™ and add the edges [124,234] and [234,134]. Thus we have formed the
hamiltonian cycle [123,124,234,134] in K,’ using all the induced cycles in CcM and C®.
Thus K’ is hamiltonian.

Assume that n > 4, say n = 5. Then C) = [123,124,125,135,145,134], C® =
[234, 235,245], and C®) = [345]. What we do next is to expand the hamiltonian cycle ob-
tained when n = 4. Consider C") and C(?). Remove the edges [123,124], [134, 234], [124, 234]
and [234,245]. Then add the edges [123,234] and [124,245]. Thus, we have formed one
hamiltonian cycle using all the induced cycles in C") and C?). We continue to expand this
cycle using C®). Remove the edge [234,235] from the previously obtained cycle. Then add
the edges [234, 345] and [235, 345]. Hence, we obtained a hamiltonian cycle in K5’ using the
induced cycles in CM, C®?) and C®). So if there is a C™®), we continue to expand our cycle
obtained from C™M, C®) and C®). We can continue the process up to C("~2) i.e., until we
have created a hamiltonian cycle in K,,". O

It should be noted that the hamiltonian cycle in K, is not necessarily unique. That is,
the hamiltonian cycle constructed in the proof of Theorem 1.3 is not the only one.

Remark 2. From the proof of Theorem 1.3, we have

n—2
o(K,") = o(C®,
1

i

Corollary 1.3.1. K, is an eulerian graph if and only if n is odd, n > 3.

Proof. Assume n is odd. Then n = 2k+ 1, for some k € Z. By Theorem 1.3, K,," is 3(n—3)-
regular. That is, K,," is 3[(2k + 1) — 3] = 2[3(k — 1)]-regular. Hence, Vu € V(K,'), deg(u)
is even. This means that K,,” is eulerian.
Conversely, assume K,," is eulerian. Then, deg(u) is even Yu € V(K,'). Suppose n is
even. Then n = 2k for some k € Z. Furthermore, by Theorem 1.3, K,," is 3(n — 3)- regular.
But
3(n—3)=302k—-3)=6k—9=06k—10+1=2(3k—5)+1,

is an odd number. This contradicts the initial assumption that K,  is eulerian.
Therefore, n must be odd. O

Theorem 1.4. K, is a 2(n — 2)-reqular eulerian graph for n > 2.

Proof. By Theorem 1.1, K3, has exactly (72’) induced cycles and all are Cy4’s. Let K5, be
the labeled graph shown in Figure 4. Observe that every induced cycle in K3 ,, is of the form
¢ij = @, 2,b,2i4j,a], where t = 1,2,....n—1,j=1,2,...,n—1,and i+ j = 2,3,...,n.
Let us now count the number of induced cycles which are adjacent to a cycle ¢;;, for some
1,j. Observe that two induced cycles in K, are adjacent whenever they have exactly two
common edges. Now, observe also that there are n — 2 vertices which can be paired with z;,
a and b to form an induced cycle adjacent to c¢;;. Similarly, there are n — 2 vertices which
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can be paired with 2;;;, a and b to form an induced cycle adjacent to c¢;;. This means, by
symmetry, that every c;; is adjacent to 2(n — 2) induced cycles.

Thus K>, is a 2(n — 2)-regular graph. Furthermore, since 2(n — 2) is even, Ks,,' is
eulerian. O

Figure 4: A labeling of K ,,.

Theorem 1.5. K, is a hamiltonian graph for each n > 3.

Proof. Let the vertices of K, be the partite sets A = {a,b} and B ={1,2,3,...,n}. Any
induced cycle in K ,, is of the form [a,i,b, j,a], where 1 <4 # j < n. For convenience, we
shall denote this induced cycle by ij. Now, when are two induced cycles ij and i’j" adjacent
in Kém? It is easy to see that these two induced cycles are adjacent if and only if the sets
{i,7} and {¢’, j'} have exactly one element in common. Our job now is to make a complete
list of these induced cycles in such a way that every cycle in the list is adjacent to the cycle
following it and that the first and last cycles in the list are adjacent. Let us first make a
triangular tabulation of all the prime cycles in Ks ;, as follows:

12 13 14 15 - 1n
23 24 25 - 2n
34 35 - 3n

(n—1)n

To show that the above list is complete, notice that the number of elements in the rows,
starting from the top row, has the following terms: n—1, n—2,n—3, ..., 3, 2, 1. Observe
that we have an arithmetic sequence with common difference equal to 1. Hence, the sum,
i.e., the total number of induced cycles, is %, which is the value given in Theorem 1.1.

Note that in each row or column of the table, the cycles are mutually adjacent in K. g,n’.
On the main diagonal, consecutive cycles are adjacent in K. We can therefore create a
hamiltonian cycle in K5, in exactly the same way as in Lemma 1.2. This is illustrated for
the case n = 6 below.
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12 —- 13 — 14 — 15 — 16

AN !
23 24 «— 25 26
AN T !

34 35 36

T |

45 46

N

56

O
As in the case of K, it should be noted that the hamiltonian cycle in Kg}nl is not
necessarily unique.

Zn

Figure 5: A labelling of K, .

The next result is a generalization of Theorem 1.4.

Theorem 1.6. For m,n > 2, K,/ is a 2(n—2) +2(m —2)[2(n —2) + 1] = 2(2mn — 3n —
3m + 4)-regular eulerian graph.

Proof. By Theorem 1.1, the number of induced cycles of K, , is equal to (7;) (g) and all
are Cy’s. Refer to Figure 5 and consider a particular cycle, say the cycle ¢; = [1, 21, 3, 22, 1].
Observe that with respect to the subgraph K ,,, ¢1 is adjacent to 2(n —2) induced cycles by
Theorem 1.4. Thus, in addition, there are m — 2 of the partite set of order m which are not
accounted or considered yet. Note that for one vertex in V(K3) = {1,2} and two vertices
in V(K,)=1{z,2...,2,}, there are m — 2 ways to form induced cycles, all Cy’s, which are

adjacent to ¢1. Furthermore, for each of these ways, there are 2(n — 2) + 1 induced cycles
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of K, that are adjacent to c¢;. By a similar counting procedure, if we consider the other
vertex of K5 the same number of induced cycles adjacent to ¢y is obtained.

Hence, c; is of degree 2(n — 2) + 2(m — 2)[2(n — 2) + 1]. By symmetry and since ¢;

was arbitrarily chosen, every induced cycle in K, ,, i.e., every vertex in K, ,,’, is of degree
2(n —2)4+2(m —2)[2(n — 2) + 1] = 2(2mn — 3n — 3m + 4).

Therefore, Ky, " is a 2(2mn — 3n — 3m + 4)- regular eulerian graph. O

. . /. .
We enumerate some observations regarding K, " in the following remark.

Remark 3. 1. Ky = Knm'-

2. The size of Kmm’ is equal to

() ()
Z 2(2mn —3n—3m+4) =mn(m — 1)(n — 1)(2mn — 3n — 3m + 4).
i=1

3. From (1), one can start constructing the graph of Ky, by either drawing (7;) copies

of Kz’ or (Z) copies of Ko '

We conclude this section with an example.

Example 1.2. K ;' is of order (;) = 21. It is 2(7 — 2) = 10-regular, and of size 105.
Following the proof of Theorem 1.5, one can construct a hamiltonian cycle in Ko7' easily.

References

1]

2]

Chartrand, Gary and Ortrud R. Oellermann, Applied and Algorithmic Graph Theory,
Mc Graw- Hill, Inc.

Gervacio, Severino V. and Romulo C. Guerrero, Notes on Power Graphs, Matimyas
Matematika, January 1982.

Gervacio, Severino V. and Romulo C. Guerrero, Characterization of Power Graphs,
Matimyds Matematika, April 1982.

Gervacio, Severino V., Cycle Graphs, The Asian Journal of Graph Theory and Combi-
natorics, Proceedings of the First Graph Theory Colloquium, Singapore, 1983.

Pactor, Reyh U., On the Number of Induced Cycles in Graphs, Undergraduate Thesis,
MSU- Iligan Institute of Technology, Iligan City, May 2001.

Tan, Evelyn L., Cycle Graph of a Graph and Inverse Cycle Graphs, Doctoral Disserta-
tion, University of the Philippines, May 1987.

Uy, Joselito A., On the Number of Chordless Cycles of Graphs,, Masteral Thesis, MSU-
IIT, Tligan City, 1989.



