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Abstract

A (k, l)-chromatic coloring is a coloring where the colors form two orbits, one with
k colors and the other with l colors. In this paper, we will present two methods of
obtaining (k, l)-chromatic colorings of the edges of Platonic solids; one by considering
right cosets of a subgroup H of the symmetry group G of a Platonic solid and the
other, by using the H-orbits of the edges of a Platonic solid. In particular, we will use
the second method mentioned above to obtain some (k, l)-chromatic colorings of the
edges of the tetrahedron, cube and dodecahedron.

1 Preliminaries

In their book Tilings and Patterns [1], Grunbaum and Shephard presented the idea of (k, l)-
chromatic patterns. These are colored patterns where the colors form two orbits, one with
k colors and the other with l colors. Two examples of (k, l)-chromatic patterns on the plane
as given by Grunbaum and Shephard can be found in Figure 1. Under each pattern is the
corresponding value of the pair (k, l). It was mentioned in the book that this topic has wide
applicability and presents challenging problems. In this article we look at (k, l)-chromatic
patterns formed when the edges of a Platonic solid are colored. We show how to arrive at
such patterns.

Figure 1: Examples of (k, l)-chromatic colorings in the plane.

There are three groups that play a significant role in the analysis of a colored pattern.
These groups are:
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G : symmetry group of the pattern when the colors are ignored
H : subgroup of elements of G which permute the colors
K : subgroup of elements of G which fix the colors.

Let C be the set of colors of the pattern. Then H acts on C and this induces a homo-
morphism f from C to the group of permutations of C. For h ∈ H , f(h) is the color
permutation induced by h. The kernel of f is K and the resulting group of color permuta-
tions f(H) ∼= H/K.

To arrive at (k, l)-chromatic colorings of the edges of a Platonic solid, we let G be the
symmetry group of the solid and take a subgroup H of G. We then color the edges so
that the elements of H will permute the colors. We consider two approaches. In the first
approach, we color triangular patches on the faces of the solid. In the second, we start by
considering the orbits of the edges under the action of H .

2 Coloring the Edges by Coloring Faces

Let G be the symmetry group of a Platonic solid. Then each face of the solid may be divided
into triangular patches where each patch is the intersection of the face with a fundamental
domain for G. By associating one of the triangular patches with the identity element 1 of G,
g ∈ G may be associated with the triangular patch which is the image under g of the patch
associated with 1. This association is a one-to-one correspondence. This way we arrive at
a labeling of the triangular patches by the elements of G. We illustrate this in Figure 2
for the regular tetrahedron. Its symmetry group is of type 43m, a group isomorphic to the
symmetric group on 4 letters, S4. The isomorphism arises from assigning to each symmetry
the permutation it induces on the four vertices of the tetrahedron.

Coloring the edges of a Platonic solid corresponds to coloring the triangular patches
such that the four patches adjacent to an edge have the same color. Figure 3 illustrates
this for the tetrahedron. In [3] and [4] de las Peñas, Felix and Quilinguin developed a
framework which can be used to color symmetrical patterns. Based on the framework,
a coloring where there are two orbits of colors partition the symmetry group G into sets
{hJ1Y1 : h ∈ H}

⋃
{hJ2Y2 : h ∈ H} where J1, J2 ≤ H ≤ G and Y1

⋃
Y2 is a complete set of

right coset representatives of H in G.

As an illustration, let G = S4, H = {1, (123), (132), (13), (12), (23)}, J1 = H and J2 =
{1, (13)}. The right cosets of H in G are H , H(34), H(14) and H(124). Let Y1 = {1, (34)}
and Y2 = {(14), (124)}. The partition of G given by {HY1}

⋃
{h{1, (13)}{(14), (124)} :

h ∈ H} gives the (1, 3)-chromatic edge coloring in Figure 4.

In using the framework to arrive at (k, l)-chromatic colorings of the edges of a Platonic
solid, we need a labelling of the triangular patches on the faces of the solid and we have to
make sure that the patches adjacent to an edge are assigned the same color. We present
in the next section another method of coloring the edges of a Platonic solid. This method
does not rely on any labelling and we work directly with the edges.

3 Coloring the Edges Using the Orbits of Edges

Instead of coloring the faces to obtain the corresponding coloring of the edges, we use a
second approach. The approach makes use of the H-orbits of edges. It is based on the
theorem that follows.
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Figure 2: The labelling of the tetrahedron.

Theorem 1. Let G be the symmetry group of a given Platonic solid. Assume a coloring
of the edges, where the edges form a (k, l)-chromatic pattern. Denote by H the subgroup of
elements of G which permute the colors. Then the coloring induces a partition of the set E
of edges of the solid given by the union of

O1 = {hJ1{e11, e12, ..., e1m} : h ∈ H} and

O2 = {hJ2{e21, e22, ..., e2n} : h ∈ H}

where J1, J2 ≤ H and e11, e12, ..., e1m, e21, e22, ..., e2n are edges of the Platonic solid.

Proof.
Consider the orbits of edges of the Platonic solid under the action of H . Then the set of

edges E is partitioned into two sets E1 and E2 where E1 consists of the edges in E which
are colored using colors in the first orbit of colors and E2 consists of the edges in E which
are colored using colors found in the second orbit of colors. Moreover, each of E1 and E2

is a union of H-orbits of edges. Let E1 = E11 ∪ E12... ∪ E1m and E2 = E21 ∪ E22... ∪ E2n

where m + n is the number of H-orbits of edges and E1i (i = 1, ..., m) are the H-orbits of
edges contained in E1 ; E2j (j = 1, ..., n) are the H-orbits of edges contained in E2.

Let c1 be a color in the first orbit. Then for each E1i (i = 1, ..., m) there is an edge e1i

whose color is c1. Let J1 be the stabilizer in H of the color c1. Then J1e1i = set of edges
in E1i colored c1. For if j ∈ J1 then je1i must have color c1. In the other direction, let e be
an edge in E1i which has color c1. Since e and e1i are in the same H-orbit of edges, there
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Figure 3: The correspondence between the colorings of the faces and the edges of the
tetrahedron.

Figure 4: An example of a (1, 3)-chromatic edge coloring.

exists h ∈ H such that e = he1i and h−1e = e1i. Since e and e1i are both colored c1, then
h−1 ∈ J1 and so h ∈ J1. Hence e ∈ J1e1i. Thus the edges colored c1 are those in the set
J1e11 ∪ J1e12 ∪ ... ∪ J1e1m = J1{e11, e12, ..., e1m}.

If c′
1

is any other color in the first orbit, then there exists h′ ∈ H such that c′
1

=
h′c1. This means the edges colored c′ are those in the set h′J1{e11, e12, ...e1m}. Thus each
color in the first orbit of colors corresponds to a set of edges hJ1{e11, e12, ..., e1m}. Hence
there is a one-to-one correspondence between the set of colors in the first orbit and the set
{hJ1{e11, e12, ..., e1m} : h ∈ H}. The number of colors is equal to the cardinality of the
preceding set which is [H : J1]. Hence [H : J1] = k.

Similarly, it can be shown that the second orbit of colors is in one-to-one correspondence
with {hJ2{e21, e22, ..., e2m} : h ∈ H} where J2 is the stabilizer in H of a color in the second
orbit. �

We now present the method for arriving at (k, l)-chromatic colorings of the edges for
which the subgroup of elements of G which permutes the colors is a specified subgroup H .

Let H be a subgroup of the symmetry group G of a Platonic solid. Determine the orbits
of edges of the solid under the action of H . There are 3 possible cases:

Case 1. There is only one H-orbit of edges.
Case 2. There are exactly two H-orbits of edges.
Case 3. There are more than two H-orbits of edges.

For Case 1, the action of H on the edges of the solid is transitive. This means that if we
take any two edges of the solid, there is an element of H which will send one to the other.
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For this reason, we cannot form a (k, l)-chromatic coloring of the edges of the solid where
H permutes the colors.

For Case 2, we do the following to obtain (k, l)-chromatic colorings of the edges:

1. Let E1 and E2 be the H-orbits of edges

2. For each Ei, choose a particular edge ei and determine its stabilizer in H . Let Si be
the stabilizer of ei in H .

3. For i = 1, 2, consider all subgroups Ji of H containing Si. Color the edges in the
set E using the left cosets of Ji in H . Thus an orbit of colors is now of the form
Oi = {hJiei : h ∈ H}. For each coloring the number of colors is [H : Ji]. The number
of colors divides | Ei | since | Ei | = [H : Si] and [H : Si]=[H : Ji] · [Ji : Si].

For Case 3, we need to take the union of some of the H-orbits to come up with only two
orbits of colors.

1. Let F1 and F2 be the two sets of edges which are a union of some H-orbits. If F1

consists only of a single H-orbit then color the edges in F1 as in Case 2.

2. If F1 consists of two or more H-orbits, then we color the edges in F1 as follows:

a. Choose an edge from each H-orbit in F1. These will all be assigned the same
color. They will be called e11, e12, ..., e1m where m is the number of H-orbits
contained in F1.

b. Determine the stabilizer S1i in H of each e1i .

c. Take the join S1 of all the stabilizers S1i, (i = 1, 2, ...m).

d. Use the left cosets of a subgroup J1 in H which contains S1 to color the edges in
F1. The orbit of colors is of the form O1 = {hJ1{e11, e12, ..., e1m} : h ∈ H}.

We color the edges in F2 in the same manner.

We present next two theorems which are useful in listing all (k, l)-chromatic edge color-
ings of the Platonic solids.

Theorem 2. Let G be the symmetry group of a Platonic solid. Let H ≤ G. If [G : H ]=2,
then there is no (k, l)-chromatic coloring of the edges of the solid where H permutes the
colors.

Proof.

This follows from the fact that the symmetry group G of the solid is transitive on the
set of edges of the solid. Thus, the edges of the solid form only one orbit under the action
of H . But we need 2 orbits of colors. Therefore we cannot form a (k, l)-chromatic coloring
of the edges where the group that permutes the colors is H . �

Theorem 3. Let G be be the symmetry group of a Platonic solid. Let H∗ and H be subgroups
of G such that [H∗ : H ]=2. If there are only two H-orbits of edges and these are equal to the
H∗-orbits of edges, then H∗ permutes the colors in the (k, l)-chromatic colorings obtained
under H.
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Proof.
Let Ei be an H∗-orbit of edges of the solid. This means Ei is also an H-orbit of edges.

Let S∗

i be the stabilizer in H∗ of an edge ei in Ei and Si be the stabilizer in H of the same
edge. Thus we have

| Ei | = [H∗ : S∗

i ]

= [H : Si]

But [H∗ : H ] = 2 and [H∗ : S∗

i ] = [H : Si]. By the Diamond Isomorphism Theorem,

H∗

H
∼=

S∗

i

H ∩ S∗

i

∼=
S∗

i

Si

∼= C2

and thus [S∗

i : Si] = 2.

Let α ∈ S∗

i \Si. Let Ji be a subgroup of H containing Si and J∗

i be the subgroup of H∗

generated by Ji and α. Then

H∗ = H ∪ Hα,

S∗

i = Si ∪ Siα, and

J∗

i = Ji ∪ Jiα

We need to show that α permutes the colorings of Ei under H .

Let Oi = {hJiei : h ∈ H} be a coloring of Ei under H . Then a color in Oi is of the form
hJiei. Thus

αhJiei = h′αJiei h′ ∈ H

= h′Jiαei since α ∈ S∗

i ⊆ J∗

i

= h′Jiei since α stabilizes ei.

Therefore, α permutes the colors in Oi. �

4 Examples

1. Let H = 3m = {1, 3, 3−1, m, m, m}, a group isomorphic to D3. There are 3 H-orbits
of edges of the cube. These are E1, E2, and E3, in Figure 5b, c and d respectively. To come
up with only two orbits of colors, we need to take the union of 2 of the 3 H-orbits as follows:
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• F1 = E1 and F2 = E2 ∪ E3

• F1 = E1 ∪ E3 and F2 = E2

• F1 = E1 ∪ E2 and F2 = E3

Figure 5: The H-orbits of edges of the cube where H = 3m.

The first and third partitions of edges above will yield equivalent colorings so we will
only consider the second and third partitions.

Figure 6: The resulting colorings where F1 = E1 ∪ E3 and F2 = E2.

a. Let F1 = E1 ∪ E3 and F2 = E2. In F1, the stabilizer of an edge in H is of type m. If
the edges chosen for each of the two H-orbit of edges has the same stabilizer, S1 = m
then choices for J1 are m and H = 3m. The corresponding colorings are in Figure 6b
and c. In F2, which contains only the H-orbit E3, the stabilizer of an edge in H = 3m
is 1. Therefore, we may take J2 to be any subgroup of H . The 4 possible colorings
are in Figure 6e-h. Combining each of the 2 colorings in Figure 6b and c with each of
the colorings in Figure 6e-h result in 8 (k, l)-chromatic colorings, where the elements
of H permute the colors.

b. Let F1 = E1 ∪ E2 and F2 = E3. Then we can assign colors to the edges in F1 and F2

separately. Consider the edges in E1. An edge in this set has stabilizer in H which is
of type m. An edge in E2 on the other hand, has a stabilizer in H which is of type 1.
Thus we take J1 = m or J1 = 3m. If J1 = m, there are 3 different colorings of F1 that
arise. See Figure 7d, e and f. For F2, there are only two ways of coloring the edges
and these are found in Figure 7h and i. We get a (k, l)-chromatic edge coloring if we
combine the colorings in Figure 7d-f with the colorings in Figure 7h and i, with the
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Figure 7: The resulting colorings where F1 = E1 ∪ E2 and F2 = E3.

exception of the coloring obtained when the colorings in Figure 7 d and i are combined,
since in this coloring only one orbit of colors is formed.

2. Figure 8 illustrates a (1, 5)-chromatic coloring of the dodecahedron where H = 5̄m,
J1 = H , J2 = 2/m which was obtained using the method described previously. The inner
edges (not numbered) are all of the same color.

Figure 8: A (1, 5)-chromatic coloring of the dodecahedron where H = 5̄m.

3. All the resulting (k, l)-chromatic colorings for the tetrahedron are in Figure 9 and the
corresponding subgroups used are found in Table 1.

5 Conclusion

We used two methods of obtaining (k, l)-chromatic colorings of the edges of Platonic solids:

1. By using the right cosets of subgroups H of the symmetry group G of the solid and

2. By using H-orbits of the edges.

The first method is dependent on the labelling on the faces of the solid and in cases
where the number of right cosets of H in G is already quite numerous, the method becomes
tedious.
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coloring H J1 J2 (k, l)
a 42m 42m 42m (1,1)
b 42m 42m 2 (1,4)

c 42m mm2 42m (2,1)
d 42m mm2 222 (2,1)
e 3m 3m 3m (1,1)
f 3m 3m m (1,3)
g 3m m 3m (3,1)
h mm2 mm2 mm2 (1,1)
i mm2 mm2 m (1,2)
j m m m (1,1)
k m 1 1 (1,2)

Table 1: The subgroups used to color the edges of the tetrahedron.

Figure 9: Summary of (k, l)-chromatic colorings of the edges of the tetrahedron.

The second method, on the other hand is already independent of the labels, so it has an
advantage over the first method. This method may also be used to obtain (k, l)-chromatic
colorings of other symmetrical objects. In particular this method may be used to obtain
(k, l)-chromatic colorings of the vertices of Platonic and other solids.
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